

User Guide: USB 2.0 Core
Rev. [6/2012]

6-19-2012

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 2

Table of Contents

1 General Description .. 5

2 Features ... 5

3 Block Diagram .. 5

3.1 Signal description ... 7

3.2 VSIA interface ... 9
3.2.1 Write operation ... 12
3.2.2 Read operation .. 13
3.2.3 Reading from Status Register .. 14

4 Protocol Management Block .. 16

4.1 Introduction ... 16

4.2 Interface to UTMI ... 16

4.3 USB Packets Decoding.. 18

4.4 Reset Signaling ... 19

4.5 Suspend and Resume signaling .. 20

4.6 USB 2.0 Test Mode Generation ... 21

5 Enumeration Management block. ... 22

5.1 Control Endpoint Zero.. 22

5.2 Enumeration Manager ... 23

5.3 USB Requests ... 26
5.3.1 Get Status Request. ... 26
5.3.2 Get Configuration Request. ... 28
5.3.3 Get Interface Request .. 28
5.3.4 Get Descriptor Request .. 29
5.3.5 Set Address Request .. 30
5.3.6 Set Interface Request ... 31
5.3.7 Set Configuration Request ... 32
5.3.8 Set Feature Request ... 32
5.3.9 Clear Feature Request ... 33

5.4 Descriptors ... 34
5.4.1 Device Descriptor ... 34
5.4.2 Device Qualifier Descriptor .. 35
5.4.3 Configuration descriptor .. 35
5.4.4 Other Speed Configuration Descriptor .. 36
5.4.5 Interface descriptors .. 37

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 3

5.4.6 Bulk and Interrupt Endpoints Descriptors ... 38
5.4.7 Isochronous Endpoints Descriptors ... 39

6 Bulk IN endpoints. ... 39

7 Interrupt IN endpoints. .. 46

8 Bulk OUT endpoints. .. 49

9 Bulk zero endpoint ... 55

10 Interrupt OUT endpoints ... 56

11 Isochronous IN endpoints .. 60

12 Isochronous OUT endpoints .. 64

12.1 Isochronous OUT endpoints interface. .. 64

12.2 Debugging signals for ISO Out endpoints. ... 69

13 Interrupts .. 70

14 Registers .. 71

14.1 OUT0CRTL register ... 71

14.2 OUT1CRTL register ... 72

14.3 OUT2CRTL register ... 72

14.4 OUT3CRTL register ... 73

14.5 OUT4CRTL register ... 73

14.6 OUT5CRTL register ... 73

14.7 OUT6CRTL register ... 74

14.8 OUT7CRTL register ... 74

14.9 OUT8CRTL register ... 75

14.10 OUT9CRTL register ... 75

14.11 OUT10CRTL register ... 75

14.12 OUT11CRTL register ... 76

14.13 IN0CRTL register .. 76

14.14 IN1CRTL register .. 77

14.15 IN2CRTL register .. 77

14.16 IN3CRTL register .. 77

14.17 IN4CRTL register .. 78

14.18 IN5CRTL register .. 78

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 4

14.19 IN6CRTL register .. 79

14.20 IN7CRTL register .. 79

14.21 IN8CRTL register .. 79

14.22 IN9CRTL register .. 80

14.23 IN10CRTL register .. 80

14.24 IN11CRTL register .. 81

14.25 Status Register ... 81

14.26 DEVICE_addr register ... 82

14.27 Test register ... 82

14.28 Suspend register .. 83

14.29 Interrupt Enable Register. ... 83

14.30 New_Frm_L and New_Frm_L registers. .. 83

14.31 Max Packet Size registers. ... 84

14.32 Setup registers. .. 85

14.33 Counter_WR and Counter_RD registers. ... 85

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 5

General Description

Aldec USB 2.0 core is the RTL model of USB 2.0 Function Controller, which is fully compatible with the
USB 2.0 specification. This core is available in VHDL along with behavioral testbench. The testbench
gives code coverage at last 95% (statement, branch). The core has been optimized for popular FPGA
devices and its functionality has been verified in the real hardware.

Features

 Fully compliant to USB 2.0 specification

 Supports full-speed 12Mbps and high-speed 480Mbps modes

 Supports USB 2.0 Transceiver Macrocell Interface (UTMI)

 Conformed to Virtual Component Interface Standard (VCI)

 Programmable number of endpoints

 Flexible endpoint configuration

 Support for bulk, interrupt and isochronous transfers

 Supports high-bandwidth mode

 Optionally maximum Packet Size for bulk, interrupt and isochronous endpoints

 Hardware enumeration manager

 Fully-synchronous design

 Interfaces to any application bus.

Block Diagram

The Protocol Manager is connected to UTMI transceiver. This module handles USB bus reset including
high speed detection and suspend and resume signaling. The Protocol Manager handles token address
decoding for USB packets. Each Endpoint Manager is informed by the Protocol Manager if a token
addressed to the endpoint has been received. The Endpoint Managers handle communication between
Protocol Manager and endpoint memory (Bulk/Interrupt Memory or Isochronous FIFO). Endpoint
Managers handle ping protocol. The USB core contains additional module named Enumeration
Manager. This unit handles the enumeration process when the device is first plugged in. The USB core
handles all device requests over control endpoint zero, so the developer can immediately start writing
code to transfer data over USB using these preconfigured endpoints. The Enumeration Manager can be
turned off and the enumeration process may be handled by a microcontroller. Optionally, the
Enumeration Manager may download firmware from USB host. The Bus Interface block provides
interface between USB control registers and system bus. This interface is compatible with Virtual
Component Interface Standard.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 6

Figure 0.1 Simplified Block Diagram

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 7

Signal description
All ports of ALUSB 2.0 core are described in following table.

 Pin name direction description Remarks

CLK in System clock Entire core is
synchronized to
rising edge of CLK

RESET in Asynchronous system reset Active high

CLKEN in Global Clock Enable Active high

DataIN(15:0) in Input data from UTMI See section 4.2

RxActive in Receive Active – indicates that SYNC has been detected and UTM starts
receiving data

See section 4.2

RxError In Error during receiving data

RxValid in Receive Valid – indicates that data on DataIn bus are valid See section 4.2

RxValidH in Receive Valid – indicates that data on DataIn(15:8) bus are valid See section 4.2

TxReady In Transmit Data Ready – indicates that UTM will load data from DataOut bus
on the rising edge of CLK

See section 4.2

LineState(1:0) In Line State – reflects the current state of the single ended receivers. See section 4.2

DataInISO(63:0) In Input Data to Isochronous endpoint See section 11

Ce_up(3:0) In Read Strob for Isochronous endpoints OUT See section 12

TxValidHIso(3:0) In Strobe for writing higher byte of Isochronous IN endpoints See section 11

TxValidIso(3:0) In Write strobe for Isochronous IN endpoints See section 11

DataInBulk(191:0) In Input data for Bulk endpints See section 6

TxActive(11:0) In Data transfer to endpoint in progress See section 6

TxValidHBulk(11:0) In Strobes for writing higher byte of input data See section 6

TxValidBulk(11:0) Strobes for writing lower byte of input data See section 6

RxReadyBulk(11:0) In External device ready for reading data from. See section 6

Wdata(7:0) In VSI input data See section 3.2

Addr(6:0) In VSI address See section 3.2

VAL In Valid strobe (VSI standard) See section 3.2

WR In Write strobe (VSI standard) See section 3.2

DataExt(15:0) In Data from external descriptor’s memory See section 14.33

DataOut(15:0) Out Output data for UTMI See section 4.2

TxValid Out Strobe for transmitted data See section 4.2

TxValidH Out Strobe for higher byte of transmitted data See section 4.2

OpMode(1:0) Out Operational Mode – select operation mode for UTMI transceiver See section 4.2

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 8

TermSelect Out Termination Select – selects HS/FS termination. See section 4.2

XcvrSelect Out Transceiver Select – selects HS/FS transceiver. See section 4.2

SuspendM Out Suspend UTMI transceiver – macrocell circuitry drawing suspend current See section 4.2

Suspend Out USB device is suspened See section 4.2

Resume Out USB device resumes its operation See section 4.2

DataOutIso(63:0) Out Output Data from Isochronous endpoints See section 12

RxValidIso(3:0) Out Strobe for data read from Isochronous OUT endpoints See section 12

RxValidHIso(3:0) Out Strobe for higher byte of data read from Isochronous OUT endpoints See section 12

BusyIso(3:0) Out Isochronous In endpoints busy indicator See section 12

Ftogg(7:0) Out Fifo toggle indicator of Isochronous endpoints See section 12 and

See section 11

PidErr(3:0) Out PID Error indicator of Isochronous Out endpoints See section 8

CrcErr Out CRC16 Error indicator of Isochronous Out endpoints See section 8

DataOutBulk(191:0) Out Output Data from Bulk out and Interrupt endpoints See section 8

RxValidBulk(11:0) Out Strobe for data read from Bulk and interrupt OUT endpoints See section 8

RxValidHBulk(11:0) Out Strobe for higher byte of data read from Bulk and interrupt OUT endpoints See section 8 and

See section 9

EmptyOut(11:0) Out Indicates that OUT endpoint is empty See section 8 and 9

EmptyIN(11:0) Out Indicates that IN endpoint is empty See section 10 and
11

BusyIn out Indicates given IN endpoint is busy See section 10 and
11

BusyOut Out Indicates given OUT endpoint is busy See section 8 and 9

RData(7:0) Out VSI output data See section 3.2

AddExt(4:0) Out Address to external descriptor’s memory See section 14.33

INT Out Interrupt request signal See section 3.2

ACK Out Acknowledge signal (VSI standard) See section 3.2

nUSBRes Out Reset for Kawasaki Transciever. See section 4.2

REPEATNEEDED(3:0) Out Debug Signal for ISO OUT endpoints. See section 12.3

REPEAT(3:0) In Debug Signal for ISO OUT endpoints. See section 12.3

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 9

VSIA interface
The user can communicate with the ALUSB 2.0 via set of 8-bit registers assembled in table 3.1. The
access to these registers is realized by simple 8-bit interface that is compatible to Virtual Component
Interface (VCI) standard. The interface assures flexible connection to any other user IP, especially
microprocessors and microcontrollers.

For clearance purpose, in this document, any device connected to the interface is called microprocessor.

The core utilizes 7 address lines. All registers occupy addresses from 00h to 67h.

Some registers are read-only, some write-only and some are read-write. Writing data to read-only or not
implemented register does not affect specified register. Reading from write-only or not implemented
register causes the read data is 00h.

Table 0.1 ALUSB 2.0 registers

address Name Description Dir

00h
 OUT0CRTL Sets toggle and resets Bulk0 OUT endpoint W

01h OUT1CRTL Sets toggle and resets Bulk1 OUT endpoint W

02h OUT2CRTL Sets toggle and resets Bulk2 OUT endpoint W

03h OUT3CRTL Sets toggle and resets Bulk3 OUT endpoint W

04h OUT4CRTL Sets toggle and resets Bulk4 OUT endpoint W

05h OUT5CRTL Sets toggle and resets Bulk5 OUT endpoint W

06h OUT6CRTL Sets toggle and resets Bulk6 OUT endpoint W

07h OUT7CRTL Sets toggle and resets Bulk7 OUT endpoint W

08h OUT8CRTL Sets toggle and resets Interrupt0 OUT endpoint W

09h OUT9CRTL Sets toggle and resets Interrupt1 OUT endpoint W

0Ah OUT10CRTL Sets toggle and resets Interrupt2 OUT endpoint W

0Bh OUT11CRTL Sets toggle and resets Interrupt3 OUT endpoint W

0Ch N/A

0Dh N/A

0Eh N/A

0Fh N/A

10h IN0CRTL Sets toggle and resets Bulk0 IN endpoint W

11h IN1CRTL Sets toggle and resets Bulk1 IN endpoint W

12h IN2CRTL Sets toggle and resets Bulk2 IN endpoint W

13h IN3CRTL Sets toggle and resets Bulk3 IN endpoint W

14h IN4CRTL Sets toggle and resets Bulk4 IN endpoint W

15h IN5CRTL Sets toggle and resets Bulk5 IN endpoint W

16h IN6CRTL Sets toggle and resets Bulk6 IN endpoint W

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 10

17h IN7CRTL Sets toggle and resets Bulk7 IN endpoint W

18h IN8CRTL Sets toggle and resets Interrupt0 IN endpoint W

19h IN9CRTL Sets toggle and resets Interrupt1 IN endpoint W

1Ah IN10CRTL Sets toggle and resets Interrupt2 IN endpoint W

1Bh IN11CRTL Sets toggle and resets Interrupt3 IN endpoint W

1Ch

1Dh

1Eh

1Fh

20h Feature control 0 Resets and/or clears all Bulk and Interrupt endpoints IN and OUT W

21h Feature control 1 Resets all Bulk endpoints IN and OUT and/or set all Bulk and Interrupt
endpoints IN and OUT

W

22h Feature control 2 Resets all Bulk OUT and/or clears all Bulk and Interrupt endpoints IN W

23h Feature control 3 Resets all Bulk IN and/or sets all Bulk and Interrupt endpoints IN W

24h Feature control 4
Resets all Interrupt endpoints IN and OUT and/or clear all Bulk and Interrupt
endpoints OUT

W

25h Feature control 5
Resets all Interrupt endpoints OUT and/or set all Bulk and Interrupt
endpoints OUT

W

26h Feature control 6 Resets all Interrupt endpoints IN and/or clears all Bulk endpoints IN and OUT W

27h Feature control 7
Resets all Bulk and Interrupt endpoints OUT and/or sets all Bulk endpoints IN
and OUT

W

28h Feature control 8
Resets all Bulk and Interrupt endpoints IN and/or clears all Interrupt
endpoints IN and OUT

W

29h Feature control 9 Sets all Interrupt endpoints IN and OUT W

30h–3Fh N/A

40h Status_USB Status Register R/W

41h DEVICE_addr Device address W

42h Test Test Settings W

43h Suspend Suspend Settings W

44h Valid_in_L Valid IN low byte W/R

45H Valid_in_H Valid IN high byte W/R

46h Valid_out_L Valid_out low byte W/R

47h Valid_out_H Valid out high byte W/R

48h Stall_in_L Stall in low byte W/R

49h Stall_in_H Stall in High byte W/R

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 11

4Ah Stall_out_L Stall out Low byte W/R

4Bh Stall_out_H Stall out H byte W/R

4Ch Int_Enable Interrupt Enable Register W/R

4Dh N/A

4Eh N/A

4Fh N/A

50h Max_Pack_size_L_C Max packet size low byte ep 12 W

51h Max_Pack_size_H_C Max packet size high byte ep 12 W

52h Max_Pack_size_L_D Max packet size low byte ep 13 W

53h Max_Pack_size_H_D Max packet size high byte ep 13 W

54h Max_Pack_size_L_E Max packet size low byte ep 14 W

55h Max_Pack_size_H_E Max packet size high byte ep 14 W

56h Max_Pack_size_L_F Max packet size low byte ep 15 W

57h Max_Pack_size_H_F Max packet size high byte ep 15 W

58h New_Frm_L New Frame low byte R

59h New_Frm_H New Frame high byte R

5Ah Counter_wr_low
Counter_wr low byte. Defines number of bytes send during the control
transfer. W

5Bh Counter_wr_high
Counter_wr high byte. Defines number of bytes send during the control
transfer. W

5Ch Counter_rd_low
Counter_rd_low byte. Defines number of bytes received during the control
transfer. R

5Dh Counter_rd_high
Counter rd high byte. Defines number of bytes received during the control
transfer. R

5Eh N/A

5Fh N/A

60h setup 0 Setup byte 0 R

61h setup 1 Setup byte 1 R

62h setup 2 Setup byte 2 R

63h setup 3 Setup byte 3 R

64h setup 4 Setup byte 4 R

65h setup 5 Setup byte 5 R

66h setup 6 Setup byte 6 R

67h setup 7 Setup byte 7 R

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 12

The ALUSB 2.0 core is treated as target, however, the microprocessor is treated as initiator (see chapter
2.2 of VCI standard). According to VCI standard, the ALUSB 2.0 interface consists of following ports:

 VAL,

 ACK,

 RD,

 ADDRESS(6 downto 0),

 WDATA(7 downto 0).
Since the interface supports only 8-bit data width and supports neither burst transactions nor error
signaling, these five ports suffice to perform any read and write operation. The figure 3.2 shows signals
used by VCI interface in the ALUSB 2.0.

Figure 0.2 VSIA interface.

Write operation

During write operation RD signal is set to 0, microprocessor sets address of register to be written to.
Simultaneously, it asserts the VAL signal and updates data on WDATA bus. The address, data and the
VAL signal must be maintained until ACK has become asserted and there is a rising edge of CLK. On this
edge data are written to ALUSB 2.0 interface.

During write, the ACK is asynchronously generated of VAL. Figure 3.3 shows write operation to the one
of registers. Shaded ADDRES and DATA stand for do not care.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 13

Figure 0.3 Write operation to the ALUSB 2.0

The VAL asserted indicates that microprocessor sets address and sets valid data on the bus. ACK
asserted means that ALUSB 2.0 core can complete write operation.

Note:

ACK is not synchronized to CLK. In write operation ACK depends on VAL only.

If microprocessor meets ACK asserted on rising edge, it should deactivate VAL signal, otherwise the
write operation will be performed again.

Read operation
During read operation RD is set to 1, microprocessor sets address of register to be read from.
Simultaneously, it asserts the VAL signal. The address, data and the VAL signal must be maintained until
ACK has become asserted and there is a rising edge of CLK. During read, the ACK is synchronously
generated when VAL is 1 and rising edge on CLOCK occurs. For all registers except for 5Ch and 5Dh, ACK
is asserted on next rising edge of CLOCK after VALID is set to 1. For 5Ch and 5Dh registers ACK is asserted
two clock cycle after VALID is set to 1. Figure 3.4 shows read operation from Status Register. Shaded
ADDRES and DATA stand for do not care.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 14

Figure 0.4 Read operation from Status Register

Figure 3.5 shows read operation from New_Frm_L register.

Figure 0.5 Read operation from New_Frm_L

Reading from Status Register
Status Register is special register that indicates current state of ALUSB 2.0. Status Register is associated
with five sources of interrupt generated by the ALUSB 2.0 core. (For more details regarding interrupts
see section 11). When any of these interrupts occurs, the INT output is asserted. INT is cleared when all

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 15

flags indicating interrupts sources are cleared. In order to clear specified flag in the Status Register, the
one should be set to it by writing Status Register with proper mask (See section 11).

The Status register should be read by microprocessor after occurrence of rising edge on INT output.

 If the read operation is being performed on the Status Register, and some interrupt occurs at the same
time, then read operation is postponed. It means that ACK is asserted two or more CLK cycles from VAL
set to one. Figure 3.6 shows the case where start of read operation and SOF interrupt occur
simultaneously. SOF is internal signal that indicates occurrence of new frame (microframe) (for more
detail see section 4).

Figure 0.6 Read operation from Status Register when SOF interrupt occurs

The INT output is asserted one CLOCK cycle after SOF is set to one. ACK is asserted one cycle later. It
causes that microprocessor reads Status Register that is updated and information of SOF interrupt is
indicated during current read. If no interrupt occurs at the beginning of read operation, the read is
performed as shown on figure 3.5.

If any interrupt occurs at the beginning of read operation of the others registers, the read is not
postponed.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 16

Protocol Management Block

Introduction
Because the USB 2.0 devices operate on very high frequency – 480MHz, data recovery cannot be
handled using HDL technology. For full-speed devices ASIC vendors provide only simple level translator
to meet the USB signaling requirements. This technology is not sufficient for USB 2.0 clock rate. The USB
2.0 transceiver must handle low level USB protocol to provide the data rate that is compatible with
today’s FPGA devices. IntelTM released specification for USB 2.0 transceiver. The UTMI transceiver
handles data serialization and deserialization, bit-stuffing and clock recovery and synchronization. The
USB data are provided in parallel form and the data rate does not exceed 60MHz. The Aldec USB 2.0
core is designed to interface with the UTMI transceiver. It is capable of transmitting data at both full-
speed and high-speed data rates. The pinout conforms with the UTMI specification.

Interface to UTMI
The UTMI specification provides two interfaces. The 8-bit interface supports 60MHz performance and is
intended for ASIC implementation. The UTMI specification provides also 16-bit interface, which is
intended for FPGA based designs. The Aldec USB core is compatible with the 16-bit interface. However,
the 8-bit UTMI can be also very easy connected. A simple logic must be added between the USB and
UTMI interface. The USB core provides global clock enable signal, which can be used in this case to
adjust clock frequency of the USB core. The Protocol Management block contains the following signals,
which should be connected to the UTMI transceiver:

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 17

Table 0.2 UTMI interface signlas

Name Direction Active Level Description

CLK Input Rising-Edge Global Clock Signal

CLKEN Input High Global Clock Enable Signal.

Reset Input High Global asynchronous reset.

XcvrSelect Output N/A Transceiver Select – selects HS/FS transceiver.

TermSelect Output N/A Termination Select – selects HS/FS termination.

SuspendM Output Low Suspend UTMI transceiver – macrocell circuitry drawing suspend
current.

LineState

(0-1)

Output N/A Line State – reflects the current state of the single ended receivers.

OpMode

(0-1)

Output N/A Operational Mode – select operation mode for UTMI transceiver.

DataOut

(0-15)

Output N/A DataOut – 16-bit parallel data bus.

TXValid Output High Transmit Valid – indicates that the DataOut bus is valid.

TXValidH Output High Transmit Valid High – indicates that DataOut(8-15) bus is valid.

TXReady Input High Transmit Data Ready – indicates that UTM will load data from
DataOut bus on the rising edge of CLK.

DataIn

(0-15)

Input N/A DataIn – 16-bit parallel data bus.

RXValid Input High Receive Data Valid – indicates that DataIn bus has valid data.

RXValidH Input High Receive Data Valid H – indicates that DataIn(8-15) bus has valid
data.

RXActive Input High Receive Active – indicates that SYNC has been detected and UTM
starts receiving data.

nUSBRes Input Low Reset for Kawasaki transceiver.

The UTMI interface is defined in the “USB 2.0 Transceiver Macrocell Interface Specification” provided by
IntelTM. The specification contains details about functionality and timing of the interface. The UTMI
transceiver handles the following functions:

 Data and clock recovery from serial stream on the USB.

 SYNC/EOP generation and checking.

 Bit-stuffing, unstuffing and bit-stuff error detection.

 Suspend/Resume signaling.

 USB 2.0 Test Mode.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 18

The data received from USB cable are deserialized. The UTMI block removes suffed bits and SYNC and
EOP fields from the USB packet. The PID and CRC fields remain unchanged. Then, the data are outputted
using parallel interface. The UTM interface handles additionally Suspend, Reset and Resume signaling.
The UTMI logic allows us to detect or send Chirp K, J states on the USB bus. The High-Speed or Full-
Speed operation mode can be changed any time to handle Suspend or Resume signaling.

 The USB core contains nUSBRes additional port. It is reset signal for Kawasaki KL5KUSB200
transceiver. The KL5KUSB200 chip is not fully compliant with UTMI specification. It requires
asynchronous resetting while the USB Host performs bus reset signaling. The nUSBRes port should be
connected directly with RSTN input of the KL5KUSB200 transceiver. Please, refer to KL5KUSB200 USB 2.0
compliant Transceiver Chip DataSheet Rev 0.21 for additional information. The nUSBRes signal is active
by 330ns at the beginning of each USB bus reset sequence. It resets asynchronously the KL5KUSB200
transceiver and remains inactive until the next bus reset sequence. This port should be left unconnected
while other UTMI transceivers are used.

USB Packets Decoding
The Protocol Management Block receives data form UTMI transceiver. First of all this block must find
out what packet type is being sent by the USB bus. The packet identifier (PID) is decoded to determine
the type of packet, the format of the packet and the tape of error detection applied to the packet. If the
packet has a CRC filed the protocol management unit performs CRC checking. The packet is considered
invalid if CRC checking fails. The packets are divided into four groups:

 Token packets.

 Data packets.

 Handshake packets.

 Special packets.
Each token packet excluding SOF contains address filed and endpoint filed.

If such token packet is received the protocol management unit checks the address field to determine if
the token is addressed to its. If address checking fails the token is ignored. Otherwise, the endpoint field
is decoded and corresponding endpoint manager is informed that following transaction is addressed to
its.

The SOF packet is addressed to all possible USB devices connected to the bus. The SOF token consists of
a PID and 11-bit frame number. The SOF token must be delivered once to all USB devices every 1ms for
full-speed bus or every 125us for high-speed bus. If SOF token was corrupted due to bus errors, the USB
device must synthesize existence of the damaged SOF. The protocol management unit performs all
these operations. The ISO endpoints managers are informed if valid SOF PID was received. The frame
number register is updated if SOF token was received and CRC sum is correct. The protocol management
unit generates also the damaged SOFs. The contents of the frame number registers is shown the tabes
below

Table 0.3 New Frame Low byte register

New_Frm_L New Frame Low Byte X58

b7 b6 b5 b4 b3 b2 b1 b0

Frm4 Frm3 Frm2 Frm1 Frm0 Mfr 2 Mfr 1 Mfr0

R R R R R R R R

0 0 0 0 0 0 0 0

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 19

Table 0.4 New Frame High Byte

New_Frm_H New Frame High Byte X59

b7 b6 b5 b4 b3 b2 b1 b0

- - Frm10 Frm9 Frm8 Frm7 Frm6 Frm5

R R R R R R R R

0 0 0 0 0 0 0 0

The three last significant bits contain the microframe number. These bits are reset to zero and remain
unchanged if device works in full-speed mode.

A data packet consists of a PID, a data filed containing zero or more data bytes and CRC. The protocol
management unit checks and removes the PID and CRC fields and moves the data to the endpoints
managers. Each endpoint manager is informed what type of PID was received in current data packet. If
an endpoint manager sends data the protocol management unit moves the data to UTMI transceiver
and calculates CRC sum. The CRC sum is added at the end of the packet.

All special packets are ignored by USB function device excluding PING token. The PING token is handled
similarly like other token packets. The protocol management block sends information to corresponding
bulk manager that PING token was received.

Handshake packets consist of only a PID. The protocol management unit sends information to all
endpoints managers if this packet was received.

Reset Signaling
If the USB function device works in HS mode and detects bus inactivity for more than 3ms then
operation mode must be switched to full-speed. Then the protocol management block checks the
LineState signals for SE0 condition. If SE0 is asserted the protocol management block forces reset sate to
the device. If the USB function device operates in full-speed mode and sees an SE0 on its port for more
than 2.5us treats this signal as a reset. If the reset was detected then device performs HS detection
handshake protocol. The device sends Chirp-K on the bus and waits for an alternating sequence of Chirp-
K and Chirp-J, which should be sent by a hub. If the device detects the chirp sequence then enters high-
speed mode, otherwise remains in full-speed mode. The protocol management block sets HsFs flag in
the Status Register if high-speed mode is detected. The status register contains USBReset flag. This flag
is set to one if device is in the reset state. The USB function device may generate an interrupt if the
USBReset flag is set. The interrupt must be enabled setting corresponding bit in the Interrupt Enable
Register. Please, refer to the “Registers” section of this document.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 20

Table 0.5 Status Register

Status_USB Status Register x40

b7 b6 b5 b4 b3 b2 b1 b0

EnumEnable HsFs Resume SetDataIntr SOF TkSetup SuspDetect UsbReset

W R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Suspend and Resume signaling
If HS device detects SE0 asserted on the bus for more than 3ms then the operation mode is
switched to full-speed. After that, the protocol management block checks the LineState signals for
an ‘J’ state. If the ‘J’ state is asserted by time longer than 100us the device enters suspend state. The
FS device goes into the suspend state after it sees a constant ‘J’ state for more than 3ms. After
detecting the suspend signaling the USB core alerts external microcontroller by setting SuspDetect
flag in the Status Register. This may cause generation of an interrupt if corresponding enable flag is
set to one in the Interrupt Enable register. The microcontroller responds to the interrupt by
performing any necessary operation as shutting off external power consuming devices. Next, the
microcontroller sets the EnterSusp flag in the Suspend register. After that, the USB Core drives the
Suspend pin to one. The high state on the Suspend pin should turn off the external clock oscillator.
These actions put the USB core into low power mode, as required by the USB specification.

Table 0.6 Suspend Register

Suspend Suspend Register x43

B7 b6 B5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 EnterSusp ResumeEn DriveRes

R R R R R R/W R/W R/W

0 0 0 0 0 0 0 0

If a device is in the suspend state, its operations are resumed when any non-idle signaling is received on
its upstream facing port. The device can also generate resume signaling to resume system operation if
its remote wakeup capability, has been enabled by the USB host. Resume signaling always take place in
FS mode, so the behavior for HS device is identical to a FS device. The protocol management block uses
the LineState signals to determine when the transition from the ‘J’ to the ‘K’ state occurs.

If a non-idle state occurred on the bus, the USB core clears the Suspend pin and sets Resume flag in the
Status Register. The external clock oscillator should restart its operation. The Resume flag can also
generate an interrupt for external microcontroller. After these actions the USB device continues
operation in the same speed mode, which was before suspending.

An event internal to the device may initiate the resume process (Remote Wakeup). The USB device
must report that it is capable of signaling remote wakeup in the configuration descriptor. The remote
wakeup is possible if the USB host enabled the remote wakeup capability by sending Set Feature/Device

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 21

request. The ResumeEn bit in the Suspend register should be set to one if the remote wakeup is
enabled. The microcontroller or the Enumeration Manager can set this bit in response to the Set
Feature/Device request. Assuming that ResumeEn bit is set, the microcontroller can set DriveRes bit in
the Suspend register to drive remote wakeup. This signal must be asserted for at last 1ms. After this
time the USB host performs all necessary operation to wake up system and start transmission on the
bus.

USB 2.0 Test Mode Generation
Test mode of a port is entered using a device specific standard request. The microcontroller or the
Enumeration Manager must enter the test mode in response to the SetFeature(Test Mode) request. The
USB Core supports the following test modes:

Test Type Test Number Description

Test_J 01h The USB core sends continuously the high-speed J state
on the bus.

Test_K 02h The USB core sends continuously the high-speed K state
on the bus.

Test_SE0_NAK 03h The USB core responds to any IN token packet with a NAK
handshake.

Test_Packet 04h The USB core sends the test packet.

The USB core contains the Test Mode register. The register consists of the test number bits and the test
enable flag. The microcontroller sets the appropriate test mode on the four last significant bits of the
registers. The list of available test modes is shown in the table above. If the test number was set
properly, the microcontroller enables the test by setting the TestEN flag. The protocol management
block performs all operation required by selected test. The test can be disabled by resetting the USB
device.

Table 0.7 Test Mode register

TestMode Test Mode X42

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 TestEN TestNR3 TestNr2 TestNr1 TestNr0

R R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

The Enumeration Manager may also select and run these tests if it was enabled to handle the
enumeration process. The microcontroller does not have access to the register if the enumeration
manager is enabled.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 22

Enumeration Management block.

Control Endpoint Zero
The endpoint zero is a control endpoint and is required by every USB device. The endpoint accepts setup
tokens and receives standard device requests. The control endpoint zero is defined by the USB
specification as one bidirectional endpoint. The endpoint was implemented as two bulk IN and OUT
endpoints in Aldec USB Core. Both of these endpoints are handled as normal bulk endpoints.
The division of the control endpoint into two separate endpoints does not affect any control transaction.
The control endpoint zero cooperates with the Enumeration Manager, which receives the setup packets.
The setup data are never loaded to endpoint’s zero buffers. The Enumeration Manager transfers
the eight-byte packet to local data buffer for further processing. The setup packet is always received
and acknowledged regardless of the control endpoint’s valid, busy or stall bits. The setup packets
contain an eight-byte data structure that provides information about the device request. The 8-byte
buffer holds data that arrives in setup stage of the control transfer. The setup data can be processed by
a microcontroller or by the Enumeration Manager. It depends on the EnumEnable flag in the Status
Register.

Table 0.8 Status Register

Status_USB Status Register x40

b7 b6 b5 b4 b3 b2 b1 b0

EnumEnable HsFs Resume SetDataIntr SOF TkSetup SuspDetect UsbReset

R/W R R R/W R/W R/W R/W R/W

1 0 0 0 0 0 0 0

If the flag is set to one the Enumeration Manager handles all standard USB requests. Otherwise, the
microcontroller must interpret the 8-byte packet and respond to the request.

The USB core generates separate interrupt requests for the various control transfer phases, as shown on
the figure below. These interrupt are generated to simplify handling the USB request.

Figure 0.7 Interrupts associated with control transfer

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 23

The USB core generates TkSetup (Setup Token Arrived) interrupt when setup token was received. This
interrupt is normally used for configuration of control endpoint zero. The microcontroller can set toggle
bits and disarm the endpoint to be ready for data stage and status stage of the control transaction.
The USB core generates SetDataIntr (Setup Data Arrived) interrupt when the eight bytes of setup data
have been received error-free and transferred to local buffer starting at address SETDATA (0x60).

A microcontroller program responds to the SetDataIntr interrupt by inspecting the eight bytes of setup
data. When the processing is finished the microcontroller arms the control endpoint to handle data
stage or status stage of the control transaction.

The figure below shows the set of USB registers that deal with control transactions over endpoint zero.

Figure 0.8 Registers for Handling Setup Transactions

Two bits in the Interrupt Enable Register enable the Setup Token and Setup Data interrupts. The USB
core transfers eight setup bytes into the RAM buffer at SETDATA address. The Status register contains
EnumEnable control bit. The Device Address Register contains USB device address. This register can be
changed in response to Set Address request. The microcontroller may need access to the Stall and Valid
registers to handle some request regarding bulk endpoints. Please, refer to the “Registers” section of
this document for detailed description of these registers.

 Enumeration Manager
The USB core contains the Enumeration Manager block to perform enumeration without external
microcontroller. The Enumeration Manager contains the USB descriptors. This block sets the proper
endpoint configuration bits to match the descriptors. The USB core handles all device requests over
control endpoint zero, so the developer can immediately start writing code to transfer data over USB
using these preconfigured endpoints. The enumeration process can be handled also by the external
microcontroller.

The EnumEnable bit in the Status Register determines which entity the core or the microcontroller
handles enumeration process. At power on the EnumEnable bit is one, indicating that the USB core

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 24

handles device requests. The Table below shows how the USB core responds to USB request when
EnumEnable=1.

Table 0.9 USB Device Requests

Request Action

Get Descriptor Supplies table of descriptors

Get Configuration Return configuration number

Get Interface Return Alternate Settings number

Get Status/Device Return two zero bytes

Get Status/Interface Return two zero bytes

Get Status/Endpoint Supplies Stall bit for indicated EP

Clear Feature/Device None

Clear Feature/Endpoint Clears Stall bit for indicated EP

Set Feature/Device None

Set Feature/Endpoint Set Stall bit for indicated endpoint

Set Configuration Configure device and sets configuration number

Set Interface Configure device and sets interface number

Set Address Set device address

Set Descriptor None

Sync Frame None

The USB core has built-in descriptor data table. The Enumeration Manager sends the descriptor table in
response to Get Descriptor request. The USB device consists of single USB configuration containing one
interface with two alternate setting. The endpoints reported for this device are shown in the table
below:

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 25

Table 0.10 The USB Core Endpoints

Endpoint Type Alternate Settings

 0 1

Max Packet Size

0 INOUT CTRL 64 64

1 IN Bulk 0 64

1 OUT Bulk 0 64

2 IN Bulk 0 64

2 OUT Bulk 0 64

3 IN Bulk 0 64

3 OUT Bulk 0 64

4 IN Bulk 0 64

4 OUT Bulk 0 64

5 IN Bulk 0 64

5 OUT Bulk 0 64

6 IN Bulk 0 64

6 OUT Bulk 0 64

7 IN Bulk 0 64

7 OUT Bulk 0 64

8 IN Interrupt 0 64

8 OUT Interrupt 0 64

9 IN Interrupt 0 64

9 OUT Interrupt 0 64

10 IN Interrupt 0 64

10 OUT Interrupt 0 64

11 IN Interrupt 0 64

11 OUT Interrupt 0 64

12 IN ISO 0 64

12 OUT ISO 0 64

13 IN ISO 0 64

13 OUT ISO 0 64

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 26

14 IN ISO 0 64

14 OUT ISO 0 64

15 IN ISO 0 64

15 OUT ISO 0 64

The alternate setting zero uses no interrupt or isochronous bandwidth as recommended by USB
specification. If the Enumeration Manager is turned on the microcontroller may also read or write the
endpoint’s STALL registers. The microcontroller may have to halt an endpoint because of receiving
incorrect data. The Enumeration Manager has a higher priority if both microcontroller and the
Enumeration Manager write data to the register at the same time. The Enumeration Manager controls
also Device Address Register. The microcontroller may write data to the register but the data are
ignored as long as the EnumEnable bit is one. If the EnumEnable bit is reset to zero, the USB core passes
all USB request onto the microcontroller via the SETDATA buffer. The STALL registers and Device
Address register are fully controlled by the microcontroller if EnumEnable is reset to zero.

Note:

The USB configuration can be changed upon user request. Some of endpoints can be removed and the
USB descriptors can by modified to meet user requirements.

 USB Requests
The USB specification defines a set of Standard Device Requests. The request and the request’s
parameters are sent to the device in the setup packet. Every setup packet has eight bytes. USB device
must respond to standard device request. This section describes how the USB device responds to
individual request.

Get Status Request.
The USB specification defines three USB status requests. The requests are as follows:

1. Decvice Staus
a. Remote Wakeup
b. Self-Powered

2. Endpoint Staus
a. Stall bit.

3. Interface Status – reserved.

The following tables show the eight setup bytes for the Get Status request:

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 27

Table 0.11 Get Device Status Request

Byte Field Value Description Response

0 bmRequest 0x80 Request to device - type In Byte 0:

Bit0 – Self Powered

Bit1- Remote Wakeup

Byte 1: zero

1 bRequest 0x00 Get Status request

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x02 Two bytes must be returned

7 wLengthH 0x00

Table 0.12 Get Interface Status Request

Byte Field Value Description Response

0 bmRequest 0x81 Request to interface - type In Byte0: zero

Byte1: zero

1 bRequest 0x00 Get Status request

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL INTR Interface number

5 wIndexH 0x00

6 wLengthL 0x02 Two bytes must be returned

7 wLengthH 0x00

Table 0.13 Get Endpoint Status request

Byte Field Value Description Response

0 bmRequest 0x82 Request to Endpoint - type In Byte0:

Bit0 – Stall bit

Byte1: zero

1 bRequest 0x00 Get Status request

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL EP Endpoint number

5 wIndexH 0x00

6 wLengthL 0x02 Two bytes must be returned

7 wLengthH 0x00

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 28

The Get Status Device request queries the state of two bits, Remote Wakup and Self-Powered. The
Remote Wakeup bit indicates whether or not the device is enabled to request remote wakeup. The
Self-powered bit indicates whether or not the device is self-powered.

The Enumeration Manager returns two zero bytes in response to Get Status Interface request. This
request is reserved for future use.

Each bulk or interrupt endpoint has a Stall bit. If this bit is set the endpoint returns a STALL
handshake in response to any USB transaction. The Get Status Endpoint request returns the Stall bit
for corresponding endpoint.

Get Configuration Request.

Table 0.14 Get Configuration Request

Byte Field Value Description Response

0 bmRequest 0x80 Request to device - type In Byte 0:

The configuration number

1 bRequest 0x08 Get Configuration Request

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x01 One bytes must be returned

7 wLengthH 0x00

The Enumeration Manager returns the current configuration number in response to this request.

Get Interface Request

Table 0.15 Get Interface Request

Byte Field Value Description Response

0 bmRequest 0x81 Request to Device - type In Byte 0:

The alternate Setting for
specified interface

1 bRequest 0x0A Get Interface Request

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL INTR Interface Number

5 wIndexH 0x00

6 wLengthL 0x01 One bytes must be returned

7 wLengthH 0x00

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 29

The Enumeration Manager returns the alternate setting for selected interface.

Get Descriptor Request

The USB specification defines four types of the Get Descriptor request:

 Get Descriptor – Device

 Get Descriptor – Configuration

 Get Descriptor - Device Qualifier

 Get Descriptor - Other Speed Configuration
The following tables show the setup packet bytes for the Get Descriptor requests:

Table 0.16 Get Device Descriptor Request

Byte Field Value Description Response

0 bmRequest 0x80 Request to Device - type In The Device descriptor
table.

1 bRequest 0x06 Get Descriptor request

2 wValueL 0x00

3 wValueH 0x01 Device Descriptor

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of returned bytes

7 wLengthH LenH

Table 0.17 Get Configuration Descriptor Request.

Byte Field Value Description Response

0 bmRequest 0x80 Request to Device - type In The Configuration
descriptor table.

1 bRequest 0x06 Get Descriptor request

2 wValueL CFG Configuration number

3 wValueH 0x02 Configuration Descriptor

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of returned bytes

7 wLengthH LenH

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 30

Table 0.18 Get Device Qualifier Descriptor Request

Byte Field Value Description Response

0 bmRequest 0x80 Request to Device - type In The Device Qualifier
descriptor table.

1 bRequest 0x06 Get Descriptor request

2 wValueL 0x00

3 wValueH 0x06 Device Qualifier Descriptor

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of returned bytes

7 wLengthH LenH

Table 0.19 Get Configuration Descriptor Request

Byte Field Value Description Response

0 bmRequest 0x80 Request to Device - type In The Other speed
configuration descriptor
table.

1 bRequest 0x06 Get Descriptor request

2 wValueL 0x00

3 wValueH 0x07 Other Speed Configuration Descriptor

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of returned bytes

7 wLengthH LenH

The requests return the specified descriptor. The wLength filed specifies the number of bytes to return.
A request for configuration descriptor returns the configuration descriptor, all interface descriptors and
all endpoint descriptors for all of the interfaces in a single request.

Set Address Request

This request sets the device address for all future device accesses.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 31

Table 0.20 Set Device Address request

Byte Field Value Description Response

0 bmRequest 0x00 Request to Device - type Out

 1 bRequest 0x05 Set Address request

2 wValueL ADDR Device Address

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Set Interface Request

Some USB devices have configurations with different interfaces and alternate settings. This request
allows the host to select an interface and an alternate setting.

Table 0.21 Set Interface request

Byte Field Value Description Response

0 bmRequest 0x01 Request to Interface - type Out

 1 bRequest 0x0B Set Interface request

2 wValueL AS Alternate Setting

3 wValueH 0x00

4 wIndexL INTR Interface

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 32

Set Configuration Request

Table 0.22 Set Configuration request

Byte Field Value Description Response

0 bmRequest 0x00 Request to Device - type Out

 1 bRequest 0x09 Set Configuration request

2 wValueL CFG Configuration Number

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

This request sets the device configuration. The lower byte of the wValue filed specifies the desired
configuration. This configuration must be zero or match a configuration value from a configuration
descriptor.

Set Feature Request

The Set Feature request is used to enable remote wakeup or stall an endpoint. This request is also used
to select and enable the USB 2.0 Test Mode.

Table 0.23 Set Device Feature request

Byte Field Value Description Response

0 bmRequest 0x00 Request to Device - type Out

 1 bRequest 0x03 Set Feature request

2 wValueL FTR Feature Selector

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH TEST Test Mode Selector

6 wLengthL 0x00

7 wLengthH 0x00

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 33

The Set Feature Device request sets the remote wake up bit if the wValueL filed is equal to 01H. If
the wValueL filed indicates the test mode feature (02H), the Enumeration Manager enables the test
mode selected by wIndexH field.

Table 0.24 Set Endpoint Feature request

Byte Field Value Description Response

0 bmRequest 0x02 Request to Endpoint - type Out

 1 bRequest 0x03 Set Feature request

2 wValueL 0x00 Feature Selector – Stall bit

3 wValueH 0x00

4 wIndexL EP Endpoint Number

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

The Set Endpoint Feature request sets the Stall bit for selected endpoint.

Clear Feature Request

Table 0.25 Clear Device Feature request

Byte Field Value Description Response

0 bmRequest 0x00 Request to Device - type Out

 1 bRequest 0x01 Clear Feature request

2 wValueL 0x01 Feature Selector – remote wakeup

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

The Clear Device Feature request is used to clear a stalled endpoint. The Test Mode feature cannot be
cleared by this request.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 34

Table 0.26 Clear Endpoint Feature request

Byte Field Value Description Response

0 bmRequest 0x02 Request to Endpoint- type Out

 1 bRequest 0x03 Clear Feature request

2 wValueL 0x00 Feature Selector – stall bit

3 wValueH 0x00

4 wIndexL EP Endpoint Number

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

The Clear Endpoint Feature request removes the stall condition from an endpoint.

Descriptors
Device Descriptor

The Device descriptor specifies a MaxPacketSize of 64 bytes for control endpoint 0. The descriptor
contains Product and Release Number ID’s, which can be specified by a user. The USB core returns this
information in response to a Get_Descriptor/Device host request.

Table 0.27 The Device Descriptor

Offset Field Description Value

0 BLength Length of this descriptor = 18 bytes 12H

1 bDescriptorType Descriptor Type = Device 01H

2 bcdUSB (L) USB spec version 1.1 (L) 01H

3 bcdUSB (H) USB spec version 1.1 (H) 01H

4 bDeviceClass Device class 00H

5 bDeviceSubClass Device sub-class 00H

6 bDeviceProtocol Device Protocol 00H

7 bMaxPacketSize0 Max packet size for EP0 = 64 bytes 40H

8 IdVendor (L) Vendor id (L) XX

9 IdVendor (H) Vendor id (H) XX

10 idProduct (L) Product id (L) XX

11 idProduct (H) Product id (H) XX

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 35

12 bcdDevice (L) Device release Number (BCD,L) XX

13 bcdDevice (H) Device release Number (BCD,H) XX

14 iManufacturer Manufacturer index string = none 00H

15 Iproduct Product index string = none 00H

16 iSerialNumber Serial number index string = none 00H

17 bNumConfigurations Number of configurations in this interface = 1 01H

 Device Qualifier Descriptor

The device qualifier descriptor describes information about high-speed device that would change if the
device ware operating at the other speed. For example, if the device is currently operation at full-speed,
the device qualifier returns information about how it would operate at high-speed and vice-versa. The
USB host accesses this descriptor using the Get Descripor/Device_Qualifier. The USB core supports the
device qualifier descriptor. The device configuration is the same for both full and high speed as shown in
the table below. The descriptor can also be modified upon user request.

Table 0.28 The Device Qualifier Descriptor

Offset Field Description Value

0 Blength Length of this descriptor = 18 bytes 0AH

1 bDescriptorType Descriptor Type = Device 06H

2 bcdUSB (L) USB spec version 2.0 (L) 00H

3 bcdUSB (H) USB spec version 2.0 (H) 02H

4 bDeviceClass Device class 00H

5 bDeviceSubClass Device sub-class 00H

6 bDeviceProtocol Device Protocol 00H

7 bMaxPacketSize0 Max packet size for EP0 = 64 bytes 40H

8 bNumConfigurations Number of configurations in this interface = 1 01H

9 BReserved Reserved for future use, must be zero 00h

Configuration descriptor

The configuration descriptor includes a total length field that encompasses all interface and endpoint
descriptors that follow the configuration descriptor. This configuration describes a single interface.
The host selects the configuration using Set Configuration Request.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 36

Table 0.29 The Configuration descriptor

Offset Field Description Value

0 BLength Length of this descriptor = 9 bytes 09H

1 bDescriptorType Descriptor Type = Configuration 02H

2 wTotalLength (L) Total length (L) including Interface & Endpoint descriptors EDH

3 wTotalLength (H) Total length (H) 00

4 bNumInterfaces Number of interfaces in this configuration 01H

5 bConfigurationValue Configuration value used by Set Configuration

Request to select this interface

01H

6 IConfiguration Index of string describing this configuration 00H

7 BmAttributes Attributes - bus powered, no wakeup 80H

8 MaxPower Max power XX

Other Speed Configuration Descriptor

The Other Speed Configuration descriptor describes a configuration of a high-speed capable device if it
can operate at its other possible speed. The structure of the other speed configuration is identical to a
configuration descriptor.

Table 0.30 The Other Speed Configuration descriptor

Offset Field Description Value

0 BLength Length of this descriptor = 9 bytes 09H

1 bDescriptorType Descriptor Type = Configuration 07H

2 wTotalLength (L) Total length (L) including Interface & Endpoint
descriptors

09H

3 wTotalLength (H) Total length (H) 00

4 bNumInterfaces Number of interfaces in this configuration 01H

5 bConfigurationValue Configuration value used by Set Configuration

Request to select this interface

01H

6 iConfiguration Index of string describing this configuration 00H

7 bmAttributes Attributes - bus powered, no wakeup 80H

8 MaxPower Max power XX

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 37

Interface descriptors

Interface 0, alternate setting 0 describes endpoint 0 only. This is a “zero bandwidth”

setting. The interface has no string index.

Table 0.31 The Interface 0 Alternate Setting 0 Descriptor

Offset Field Description Value

0 Blength Length of the interface descriptor 09H

1 BdescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate setting value = 0 00H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 0 00H

5 bInterfaceClass Interface class = vendor specific FFH

6 bInterfaceSubClass Interface sub-class = vendor specific FFH

7 bInterfaceProtocol Interface protocol 00H

8 Iinterface Index to string descriptor for this interface = none 00H

Interface 0, alternate setting 1 has 30 endpoints, whose individual descriptors follow the interface
descriptor. The alternate settings have no string indices.

Table 0.32 The Interface 0 Alternate Setting 1 Descriptor

Offset Field Description Value

0 Blength Length of the interface descriptor 09H

1 BdescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero based index of this interface = 0 00H

3 bAlternateSetting Alternate setting value = 1 01H

4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 30 1EH

5 bInterfaceClass Interface class = vendor specific FFH

6 bInterfaceSubClass Interface sub-class = vendor specific FFH

7 bInterfaceProtocol Interface protocol = vendor specific 00H

8 Iinterface Index to string descriptor for this interface = none 00H

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 38

 Bulk and Interrupt Endpoints Descriptors

Interface 0, alternate setting 1 has fourteen bulk and four interrupt endpoints, whose individual
descriptors follow interface descriptor. The table below shows descriptor for Bulk IN Endpoint number
1. The others Bulk IN Endpoints have exactly the same descriptor, only the BEndpointAddress field is
changed. For example, the Bulk In Endpoint number 2 has the BendpointAddress field equal 82H.

Table 0.33 Bulk In Endpoint Descriptor

Offset Field Description Value

0 Blength Length of this endpoint descriptor 07H

1 BdescriptorType Descriptor Type = Endpoint 05H

2 BEndpointAddress Endpoint direction (1 is in) and address = IN1 81H

3 BmAttributes xfr type = Bulk 02H

4 WMaxPacketSize (L) Max packet size = 64 bytes 40H

5 WMaxPacketSize (H) Max packet size – high 00H

6 Binterval polling interval in milliseconds 00H

The Table below shows descriptor for Bulk OUT Endpoint number 1. The others Bulk OUT Endpoints
have exactly the same descriptor only the BEndpointAddress field is changed.

Table 0.34 The Bulk Out Endpoint Descriptor

Offset Field Description Value

0 Blength Length of this endpoint descriptor 07H

1 BDescriptorType Descriptor Type = Endpoint 05H

2 BEndpointAddress endpoint direction (1 is in) and address = OUT1 01H

3 BmAttributes xfr type = Bulk 02H

4 WMaxPacketSize (L) max packet size = 64 bytes 40H

5 WMaxPacketSize (H) max packet size – high 00H

6 Binterval polling interval in milliseconds 00H

The interrupt endpoints have very similar descriptors. The field bmAttributes indicates the transfer type.
This filed must have value 03h for interrupt endpoints. The default device configuratiom contains four
interrupt endpoints.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 39

Isochronous Endpoints Descriptors

Table 0.35 The Isochronous In Endpoint Descriptor

Offset Field Description Value

0 Blength Length of this endpoint descriptor 07H

1 BdescriptorType Descriptor Type = Endpoint 05H

2 BendpointAddress endpoint direction (1 is in) and address = IN8 88H

3 BmAttributes xfr type = ISO 01H

4 wMaxPacketSize (L) max packet size = 64 bytes 40H

5 wMaxPacketSize (H) max packet size – high 00H

6 Binterval polling interval in milliseconds (1 for iso) 01H

Table 0.36 The Isochronous OUT Endpoint Descriptor

Offset Field Description Value

0 Blength Length of this endpoint descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress endpoint direction (1 is in) and address = OUT2 08H

3 BmAttributes xfr type = ISO 01H

4 wMaxPacketSize (L) max packet size = 64 bytes 40H

5 wMaxPacketSize (H) max packet size – high 00H

6 Binterval polling interval in milliseconds (1 for iso) 01H

Interface 0, alternate setting 1 has four isochronous endpoints with max packet size of 64 bytes. The
tables above show descriptors for the isochronous IN and OUT endpoints. The other isochronous
endpoints have the same descriptor excluding bEndpointAddress field, which contains endpoint address.

Note:

Some of descriptors contain fields, which have the XX value. These values should be specified by the
user if hardware enumeration is used.

Bulk IN endpoints.

The Bulk endpoints typically transport large amount of data, such as that used for printers or scanners.
The Bulk data is sequential. The reliable exchange of data is ensured at the hardware level by using the
error detection in hardware and invoking a limited number of retries. The ALUSB 2.0 core supports up to

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 40

8 Bulk IN endpoints including control endpoint zero. All Bulk endpoints can operate in the Full Speed
mode as well as in the High Speed mode. The Bulk IN endpoints are independent of each other and are
referenced from 0 to 7.

The USB specification defines the maximum bulk data payload to be only 8, 16, 32, or 64 bytes for full-
speed devices and 512 bytes for high-speed devices. The bulk endpoints are designed to support the
maximum data payload size.

The Interface for all Bulk IN endpoints consists of the following ports:

 DataInBulk (127 downto 0),

 TxActive (7 downto 0),

 TxValidBulk (7 downto 0),

 TxValidHBulk (7 downto 0),

 EmptyIn (7 downto 0),

 BusyIn (7 downto 0).

Every Bulk IN endpoint uses these ports to communicate with an external device, which transfers the
data. Figure 6.1 shows the ports of the ALUSB 2.0 core that are the Bulk IN endpoints interface.

Figure 0.1 Bulk IN interface

Single endpoint utilizes:

 16 bits of DataInBulk,

 1 bit of TxActive,

 1 bit of TxValidBulk,

 1 bit of TxValidHBulk,

 1 bit of EmptyIn,

 1 bit of BusyIn.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 41

The table 6.1 shows how these signals are assigned to the individual endpoints.

Table 0.1 Signal assignment to the individual Bulk In endpoints

 0 1 2 3 4 5 6 7

DataInBulk (15:0) (31:16) (47:32) (63:48) (79:64) (95:80) (111:96) (127:112)

TxActive 0 1 2 3 4 5 6 7

TxValidBulk 0 1 2 3 4 5 6 7

TxValidHBulk 0 1 2 3 4 5 6 7

EmptyIn 0 1 2 3 4 5 6 7

BusyIn 0 1 2 3 4 5 6 7

For example endpoint 1 IN utilizes:

 DataInBulk (31 downto 16),

 TxActive (1),

 TxValidBulk (1),

 TxValidHBulk (1),

 EmptyIn (1),

 BusyIn (1).

Endpoint 3 IN utilizes:

 DataInBulk (63 downto 48),

 TxActive (3),

 TxValidBulk (3),

 TxValidHBulk (3),

 EmptyIn (3),

 BusyIn (3) etc.

The Bulk IN endpoints assure a data flow from an external device to the USB Host.

To use the given Bulk IN endpoint, the corresponding bit in the VALID_in_L register (44h) must be set
and the corresponding bit in the STALL_in_L register (48h) must be cleared.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 42

Table 0.2 The Valid Register - low byte

Valid_in_L Valid Register low byte x44

b7 b6 b5 b4 b3 b2 b1 b0

Bulk 7 Bulk 6 Bulk 5 Bulk 4 Bulk 3 Bulk 2 Bulk 1 Bulk 0

W W W W W W W W

0 0 0 0 0 0 0 1

Table 0.3 The Stall Register - low byte

Stall_in_L Stall Register low byte x48

b7 b6 b5 b4 b3 b2 b1 b0

Bulk 7 Bulk 6 Bulk 5 Bulk 4 Bulk 3 Bulk 2 Bulk 1 Bulk 0

W W W W W W W W

1 1 1 1 1 1 1 0

An external device writes data to double-buffered FIFO. The FIFO buffers are independent. The device
has access only to one FIFO buffer while the second FIFO buffer is read by the corresponding endpoint
controller.

When the endpoint controller finished reading data from its FIFO buffer, then corresponding bit of the
EmptyIn port is set. It means that FIFO buffer on the endpoint side is empty.

When a device writes data to its FIFO buffer, then the corresponding bit of BusyIn port is set.
The device clears the TxActive port when writing data to the FIFO buffer is finished. The FIFO buffers are
switched when the FIFO buffer on the endpoint side is empty and the device FIFO buffer is full. It
happens when the TxActive port is low, the BusyIn port is high and the EmptyIn port is high. Figure 6.2
shows how the FIFO buffers are accessed and switched.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 43

Figure 0.2 FIFO switch mechanism in Bulk IN endpoints

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 44

Figure 6.2a shows the FIFO buffers before switching. The FIFO1 buffer is on the endpoint side and the
FIFO2 buffer is written by the device. Figure 6.2b shows a moment when buffers are switched. The
endpoint controller reads data from FIFO1 buffer in response to Token IN. The EmptyIn port is low
indicating that the FIFO1 buffer contains unread data. Meanwhile, the device is writing new data to the
FIFO2 buffer. The BusyIn port is then high. When the endpoint controller finished reading data from
FIFO1 then EmptyIn(1) port is high. The device clears TxActive signal when writing data is finished. The
FIFO buffers are switched while TxActive signal goes low. Figure 6.2c shows FIFO buffers switch when
the device first finishes writing data to the FIFO2 buffer. Then, switching occurs when the EmptyIn signal
changes its value. Figure 6.2d shows how the FIFO buffers are connected after they have been switched.

In order to write data to FIFO a device must set valid data on the DataInBulk bus and set the TxActive
port to one. Next, device must set the TxValidBulk port to one. When TxValidHBulk is set to one it
indicates that all 16 bits of the DataInBulk bus are valid. If TxValidHBulk is not set it means that only the
lowest 8 bits of the DataInBulk bus are valid. The data is written to FIFO on a rising edge of CLK when
TxActive is asserted and TxValidBulk are asserted too.

When the BusyIn output port is low then the Device can start writing data to FIFO.

Figure 6.3 shows waveforms where seven bytes are written to Bulk IN 2 endpoint FIFO. Vertical, dashed
lines indicate moments when the data are written to FIFO.

Figure 0.3 Writing data to FIFO

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 45

Only the last data word may contain one byte. All previous data words must be two byte wide. The USB
host sees the bulk IN endpoint as single FIFO. If the USB host requires data from an endpoint, it sends IN
token to this endpoint. Responding to the token, the endpoint sends data residing in FIFO. The data is
sent in the same order as it is writen to FIFO by a device. The contents of the FIFO buffer must be sent in
a single packet. The length of the packet cannot exceed the max packet size defined in the endpoint
descriptor.

In order to send an empty packet, the external device sets the following state on input ports:

 TxActive is high,

 TxValidBulk is low,

 TxValidHBulk is low.

This condition must last at least one clock cycle. Figure 6.4 shows how to send an empty packet.

Figure 0.4 Sending empty packet to the Host

The USB core sends empty packet and clears the EmptyIn port. The USB core sends NAK handshake in
response to IN Token if the endpoint’s buffer is empty.

The USB core does not respond to IN Token addressed to an endpoint, which does not exist or is invalid.
An endpoint is invalid if corresponding bit in the Valid register is not set. If endpoint’s STALL bit is set
then the USB core sends the STALL handshake in response to IN Token. The table below shows the set of
control registers, which are used to reset an endpoint or to change its toggle bit.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 46

Table 0.4 Bulk In control registers

address Name Description Dir

10h
 IN0CRTL

Sets toggle and resets Bulk0 IN endpoint W

11h IN 1CRTL Sets toggle and resets Bulk1 IN endpoint W

12h IN 2CRTL Sets toggle and resets Bulk2 IN endpoint W

13h IN 3CRTL Sets toggle and resets Bulk3 IN endpoint W

14h IN 4CRTL Sets toggle and resets Bulk4 IN endpoint W

15h IN 5CRTL Sets toggle and resets Bulk5 IN endpoint W

16h IN 6CRTL Sets toggle and resets Bulk6 IN endpoint W

17h IN 7CRTL Sets toggle and resets Bulk7 IN endpoint W

The following table shows one of the control registers. Each of them contains the same set of control
bits for different endpoints.

Table 0. IN0CNTRL

IN0CNTRL Set toggle and reset Bulk0 IN endpoint X10

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP – Reset Endpoint - if high, it resets coresponding endpoint.

SET_ENDP – Change Toggle bit – if high, it changes value of corresponding toggle bit.

VAL_SET – Value of toggle bit – this value is written to toggle bit if SET_ENDP is high.

Interrupt IN endpoints.

The interrupt transfer type is designed to deliver data at a rate not slower than it is specified by
endpoint’s descriptor. The USB host queries the interrupt endpoints with this specified period of time.
Retry of the transfer attempts at the next period in the case of occasional delivery failure due to error
on the bus. The ALUSB 2.0 core supports up to 4 interrupt IN endpoints that can operate in High Speed
mode as well as in Full speed mode. The interrupt endpoints are independent of each other and are
referenced from 0 to 7. The endpoint’s descriptor specifies the data payload size, which an endpoint can
transmit. The maximum allowable interrupt data payload is 64 bytes or less for full-speed. High-speed
endpoints are allowed to transfer maximum up to 1024 bytes data payload.

The Interface for all Interrupt IN endpoints consists of the following ports:

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 47

 DataInBulk (101 downto 128),

 TxActive (11 downto 8),

 TxValidBulk (11 downto 8),

 TxValidHBulk (11 downto 8),

 EmptyIn(11 downto 8),

 BusyIn (11 downto 8).

Every Interrupt IN endpoint uses these ports to communicate with an external device, which sends the
data. Figure 6.1 shows ports of the ALUSB 2.0 core that are the Interrupt IN endpoints interface.

Figure 0.1 Interrupt In interface

Single endpoint utilizes:

 16 bits of DataInBulk,

 1 bit of TxActive,

 1 bit of TxValidBulk,

 1 bit of TxValidHBulk,

 1 bit of EmptyIn,

 1 bit of BusyIn.

The table 7.1 shows how these signals are assigned to individual endpoints.

Table 0.1 Signal assignment to individual interrupt In endpoints

 1 2 3 4

DataInBulk (143:128) (159:144) (175:160) (191:176)

TxActive 8 9 10 11

TxValidBulk 8 9 10 11

TxValidHBulk 8 9 10 11

EmptyIn 8 9 10 11

BusyIn 8 9 10 11

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 48

For example endpoint 1 IN utilizes:

 DataInBulk (159 downto 144),

 TxActive (9),

 TxValidBulk (9),

 TxValidHBulk (9),

 EmptyIn(9),

 BusyIn (9).

Endpoint 3 IN utilizes:

 DataInBulk (191 downto 176),

 TxActive (11),

 TxValidBulk (11),

 TxValidHBulk (11),

 EmptyIn(11),

 BusyIn (11) etc.

To use a given Interrupt IN endpoint, the corresponding bit in the VALID_in_H register (45h) must be set
and the corresponding bit in the STALL_in_H register (49h) must be cleared.

Table 0.2 Valid In Register high byte

Valid_in_H Valid In Register high byte x45

b7 b6 b5 b4 b3 b2 b1 b0

Iso3 Iso2 Iso1 Iso0 Interrupt 3 Interrupt 2 Interrupt 1 Interrupt 0

W W W W W W W W

0 0 0 0 0 0 0 0

Table 0.3 Stall Register high byte

Stall_in_H Stall In Register high byte x49

b7 b6 b5 b4 b3 b2 b1 b0

- - - - Interrupt 3 Interrupt 2 Interrupt 1 Interrupt 0

W W W W W W W W

1 1 1 1 1 1 1 1

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 49

Each Interrupt In endpoint contains a control register. This register can be used to reset an endpoint or
to change the value of the toggle bit. The table below shows a set of the control registers.

Table 0.4 Conterol register of interrupt IN endpoints

address Name Description Dir

18h IN8CRTL Set toggle and reset Interrupt0 IN endpoint W

19h IN9CRTL Set toggle and reset Interrupt1 IN endpoint W

1Ah IN10CRTL Set toggle and reset Interrupt2 IN endpoint W

1Bh IN11CRTL Set toggle and reset Interrupt3 IN endpoint W

The following table shows one of the control registers.

Table 0.5 IN8CRTL register

IN8CRTL Set toggle and reset Interrupt0 IN endpoint X18

b7 b6 B5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP – Reset Endpoint - if high, It resets a corresponding endpoint.

SET_ENDP – Change Toggle bit – if high, it changes value of corresponding toggle bit.

VAL_SET – Value of the toggle bit – this value is written to toggle bit if SET_ENDP is high.

Bulk OUT endpoints.

The ALUSB 2.0 core supports up to 8 Bulk OUT endpoints (including control endpoint zero). All Bulk
endpoints can operate in the Full Speed mode as well as in the High Speed mode. The Bulk OUT
endpoints are independent of each other and referenced from 0 to 7.

The USB 2.0 specification defines the maximum bulk data payload sizes to be only 8, 16, 32 or 64 bytes
for full-speed endpoints and 512 bytes for high-speed endpoints. Each bulk endpoint is designed to
support the maximum data payload size. The interface for all Bulk OUT endpoints consists of the
following ports:

 DataOutBulk (127 downto 0),

 RxValidBulk (7 downto 0),

 RxValidHBulk (7 downto 0),

 RxReadyBulk (7 downto 0),

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 50

 EmptyOut (7 downto 0),

 BusyOut(7 downto 0).

Each Bulk OUT endpoint uses these ports to communicate with an external device. Figure 8.1 shows the
ports of ALUSB 2.0 that are interface of the Bulk OUT endpoints.

Figure 0.1 Bulk Out interface

A single endpoint utilizes:

 1 bit of RxValidBulk (7 downto 0),

 1 bit of RxValidHBulk (7 downto 0),

 16 bits of DataOutBulk (127 downto 0),

 1 bit of RxReadyBulk(7 downto 0),

 1 bit of EmtpyOut (7 downto 0),

 1 bit of BusyOut(7 downto 0).

The table 8.1 shows how these signals are assigned to individual endpoints.

Table 0.1 Signal Assignment to individual Bulk OUT endpoints

 0 1 2 3 4 5 6 7

RxValidBulk 0 1 2 3 4 5 6 7

RxValidHBulk 0 1 2 3 4 5 6 7

DataOutBulk (15:0) (31:16) (47:32) (63:48) (79:64) (95:80) (111:96) (127:112)

RxReadyBulk 0 1 2 3 4 5 6 7

EmptyOut 0 1 2 3 4 5 6 7

BusyOut 0 1 2 3 4 5 6 7

For example endpoint 1 OUT utilizes:

 1 bit of RxValidBulk (1),

 1 bit of RxValidHBulk (1),

 16 bits of DataOutBulk (31 downto 16),

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 51

 1 bit of RxReadyBulk(1),

 1 bit of EmptyOut (1),

 1 bit of BusyOut(1).

Endpoint 3 OUT utilizes:

 1 bit of RxValidBulk (3),

 1 bit of RxValidHBulk (3),

 16 bits of DataOutBulk (63 downto 48),

 1 bit of RxReadyBulk(3),

 1 bit of EmptyOut (3),

 1 bit of BusyOut(3).

Bulk OUT endpoints assure data flow from USB Host to any device.

To use given Bulk OUT endpoint, the corresponding bit in the VALID_out_L register (46h) must be set to
one and the corresponding bit in the STALL_out_L register (4Ah) must be reset to zero.

Table 0.2 Valid In Register low byte

Valid_in_L Valid In Register low byte x46

b7 b6 b5 b4 b3 b2 b1 b0

Bulk 7 Bulk 6 Bulk 5 Bulk 4 Bulk 3 Bulk 2 Bulk 1 Bulk 0

W W W W W W W W

0 0 0 0 0 0 0 1

Table 0.3 Stall In Register low byte

Stall_out_L Stall In Register low byte x4A

b7 b6 b5 b4 b3 b2 b1 b0

Bulk 7 Bulk 6 Bulk 5 Bulk 4 Bulk 3 Bulk 2 Bulk 1 Bulk 0

W W W W W W W W

1 1 1 1 1 1 1 0

The USB Host sends data to specific Bulk OUT endpoint. The data are received by an endpoint controller
and written to double-buffered FIFO. The endpoint controller has access only to one FIFO buffer while
the second buffer is accessed by an external device.

When the device has finished reading data then the USB core sets corresponding bit of the EmptyOut
port to one. It means that the FIFO buffer on the device side is empty.

When the endpoint controller is writing data to the FIFO buffer, then the corresponding bit of the
BusyOut port is set to one. If the endpoint controller has finished writing data to specific FIFO buffer and
the second buffer is empty then the USB core switches these buffers.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 52

The FIFO buffers are always switched when the FIFO buffer on the device side is empty and the second
buffer is full. Both corresponding bits in BusyOut and EmptyOut ports go low after the buffer switch.
Figure 8.2 shows how FIFO buffers are accessed and switched.

Figure 0.2 Fifo toggle in Bulk Out endpoints

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 53

Figure 8.2a shows the FIFO buffers before a switch. The endpoint controller writes data to the FIFO1
buffer and the FIFO2 buffer is read by an external device. The EmptyOut(1) port is low indicating that
the FIFO2 buffer is not empty. The BusyOut(1) port is high indicating that the FIFO1 buffer is busy. Figure
8.2b shows a moment when the FIFO buffers are switched. If an external device finishes reading data
from the FIFO buffer first, the USB core waits until the endpoint controller fills the second buffer. After
that, these buffers are switched. Both EmptyOut(1) and BusyOut(1) flags go low after the switch.

If the endpoint controller finishes writing data first and the external device is still reading data
from its buffer. The USB core waits until device finishes reading and switches the buffers. See Figure
8.2c. The FIFO buffers after the switch are shown on figure 8.2d. In order to read data from FIFO the
external device must check the EmptyOut port. If this signal is low it means there is data in the FIFO
buffer. The device sets the RxReadyBulk port to one to read this data. If this port is high the data
residing in the FIFO buffer is outputted every rising edge of CLK. The RXValidBulk and RxValidHBulk
ports are high indicating that the DataOutBulk bus is valid. If the RxValidHBulk is high it indicates that all
16 bits of DataOutBulk bus are valid. If RxValidHBulk is low it means that only the lowest 8 bits of the
DataOutBulk bus are valid.

When RxReadyBulk is reset to zero then reading data from FIFO is suspended. The reading is
resumed when RxReadyBulk is asserted again. The RxReadyBulk should be reset to zero when EmptyOut
is set to one (all data has been read from FIFO).

Figure 8.3 shows waveforms where seven bytes are read from Bulk OUT 2 endpoints FIFO. The
Data0. Data2, Data4, Data6 bytes appear on the DataOutBulk (7 :0) bus. The Data1, Data3, Data6 bytes
appear on the DataOutBulk (15 :8) bus. The vertical, dashed lines indicate moments when the data is
read from FIFO.

Figure 0.3 Receiving data from Bulk Out

From the device point of view, Bulk endpoint OUT is seen as single FIFO. If the device requires data from
FIFO, it checks EmptyOut of specified endpoint. If this signal is zero then the device sets RxReadyBulk to

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 54

one. The data is sent in the same order as it is writen to FIFO by the USB host. Based on figure 8.3., after
sending Token Out to endpoint 2, the USB host sends data in folowing order:

Data0, Data1, Data2, Data3, Data4, Data5, Data6.

Only the last data word can be read as one byte when RxValidBulk is low and RxValidHBulk is high.

The reception of an empty packet from the USB host is signaling with the following:

 RxReadyBulk is set to one (when EmptyOut is reset to zero),

 RxValidBulk is low,

 RxValidHBulk is low,

 EmptyOut is set to one after two clock cycles.

Figure 8.4 shows how empty packet is received.

Figure 0.4 Receiving empty packet from the Host

The NAK handshake is sent to the USB host in response to the OUT token if the FIFO buffer is busy
(BusyOut is set to one).

If the OUT Token is issued to not implemented endpoint or the Valid bit of the endpoint is not set, then
no response is sent beck to the USB host.

If STALL bit of the endpoint is set, then STALL handshake is sent to the USB host.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 55

In order to configure given endpoint, the corresponding OUTxCRTL register must be updated. The
addresses of Bulk Out endpoints are shown in the following table:

Table 0.4 Bulk OUT endpoint control registers

address Name Description Dir

00h
 OUT0CRTL

Sets toggle and reset Bulk0 OUT endpoint W

01h OUT1CRTL Sets toggle and reset Bulk1 OUT endpoint W

02h OUT2CRTL Sets toggle and reset Bulk2 OUT endpoint W

03h OUT3CRTL Sets toggle and reset Bulk3 OUT endpoint W

04h OUT4CRTL Sets toggle and reset Bulk4 OUT endpoint W

05h OUT5CRTL Sets toggle and reset Bulk5 OUT endpoint W

06h OUT6CRTL Sets toggle and reset Bulk6 OUT endpoint W

07h OUT7CRTL Sets toggle and reset Bulk7 OUT endpoint W

The tabe below shows the OUT0CRTL register.

Table 0.5 OUT0CRTL register

OUT0CRTL Set toggle and reset Bulk0 OUT endpoint X00

b7 B6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

When set to one then endpoint Bulk0IN is RESET.

SET_ENDP – sets the Toggle bit in Bulk0IN endpoint to a value depending on VAL_SET.

If VAL_SET and SET_ENDP are high then the toggle bit is set to one.

If VAL_SET is low and SET_ENDP is high then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

The above-mentioned description concernes all control registers of Bulk OUT endpoints (x10 - x17).

Bulk zero endpoint

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 56

All USB devices are required to implement a default control endpoint that uses both the input and
output endpoint with endpoint number zero. The USB System uses control endpoint to initialize and
generically manipulate the logical device (e.g., to configure the logical device). The default control
endpoint provides access to the device’s configuration information and allows the generic USB status
and control access.

 Interrupt OUT endpoints

The interrupt transfer type is designed to support those devices that need to send or receive data
infrequently but with bounded service periods. The interrupt transfer provides:

 Guaranteed maximum service period for the pipe

 Retry of transfer attempts at the next period, in the case of occasional delivery failure due to error
on the bus

The ALUSB 2.0 core supports up to 4 Interrupt OUT endpoints that can operate in High Speed mode as
well as in Full speed mode. Each of Interrupt OUT endpoints is independent. The Interrupts endpoints
are referenced from 8 to 11. The maximum allowable interrupt data payload size is 64 bytes or less for
full-speed devices. High-speed endpoints are allowed to transmit the maximum data payload sizes up to
1024 bytes.

Interface for all Interrupt OUT endpoints consists of the following ports:

 DataOutBulk (191 downto 128),

 RxValidBulk (11 downto 8),

 RxValidBulk (11 downto 8),

 RxReadyBluk (11 downto 8),

 EmptyOut (11 downto 8),

 BusyOut(11 downto 8).

Each Interrupt OUT endpoint uses these ports to communicate with an external device. Figure 10.1
shows ports of the ALUSB 2.0 that are interface of Interrupt OUT endpoints.

Figure 0.1 Interface of Interrupt endpoints OUT

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 57

Single endpoint utilizes:

 1 bit of RxValidBulk (11 downto 8),

 1 bit of RxValidHBulk (11 downto 8),

 16 bits of DataOutBulk (191 downto 128),

 1 bit of RxReadyBluk (11 downto 8),

 1 bit of EmptyOut (11 downto 8),

 1 bit of BusyOut(11 downto 8).

The table 10.1 shows how these signals are assigned to individual endpoints.

Table 0.1 Signal assignment to individual Interrupt OUT endpoints

 0 1 2 3

RxValidBulk 0 1 2 3

RxValidHBulk 0 1 2 3

DataOutBulk (143:128) (159:144) (175:160) (191:176)

RxReadyBluk 0 1 2 3

EmptyOut 0 1 2 3

BusyOut 0 1 2 3

For example endpoint OUT 1 utilizes:

 1 bit of RxValidBulk (1),

 1 bit of RxValidHBulk (1),

 16 bits of DataOutBulk (159 downto 144),

 1 bit of RxReadyBluk (1),

 1 bit of EmptyOut (1),

 1 bit of BusyOut(1).

Endpoint OUT 3 utilizes:

 1 bit of TX_VALID_UP (3),

 1 bit of TX_VALIDH_UP (3),

 16 bits of DataOutBulk (191 downto 176),

 1 bit of RxReadyBluk (3),

 1 bit of EmptyOut (3),

 1 bit of BusyOut(3).

The interrupt OUT endpoints assure data flow from USB Host to any device.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 58

To use given Interrupt OUT endpoint, the corresponding bit in the VALID_out_H register (47h) must be
set to one and the correspondent bit in STALL_out_H register (4Bh) must be reset to zero.

Table 0.2 Valid OUT Register high byte

Valid_out_H Valid OUT Register high byte x47

b7 b6 b5 b4 b3 b2 b1 b0

Iso 3 Iso 2 Iso 1 Iso 0 Interrupt 3 Interrupt 2 Interrupt 1 Interrupt 0

W W W W W W W W

0 0 0 0 0 0 0 0

Table 0.3 Stall OUT Register high byte

Stall_out_L Stall OUT Register high byte x4B

b7 b6 b5 b4 b3 b2 b1 b0

Iso 3 Iso 2 Iso 1 Iso 0 Interrupt 3 Interrupt 2 Interrupt 1 Interrupt 0

W W W W W W W W

1 1 1 1 1 1 1 1

Access to Interrupt endpoints is the same as to Bulk OUT endpoints. The behavior of the interface is
exactly the same.

In order to configure a given endpoint, the corresponding OUTxCTRL register must be updated. The
addresses of Interrupt Out endpoints are shown in the following table:

Table 0.4 Control registers of Interrupt OUT endpoints

address Name Description Dir

08h OUT8CRTL register Set toggle and reset Interrupt0 OUT endpoint W

09h OUT9CRTL register Set toggle and reset Interrupt1 OUT endpoint W

0Ah OUT10CRTL register Set toggle and reset Interrupt2 OUT endpoint W

0Bh OUT11CRTL register Set toggle and reset Interrupt3 OUT endpoint W

The following table shows the Interrupt endpoint 0 OUT control register.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 59

Table 0.5 OUT8CRTL

OUT8CRTL Set toggle and reset Interrupt0 OUT endpoint X08

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. The endpoint is reset when this flag is high.

SET_ENDP – sets Toggle bit for Interrupt 8 OUT endpoint to value depending on VAL_SET. If VAL_SET is
set to one and SET_ENDP is set to one then toggle bit is set to one. If VAL_SET is reset to zero and
SET_ENDP is set to one then toggle bit is reset to zero. If SET_ENDP is reset to zero then toggle bit is not
updated.

The above-mentioned description concernes all control registers of Interrupt endpoints (x08 – x0B).

Additional Features:

The USB 2.0 core contains additional control registers which perfom special operation on Bulk
endpoints. The operation are listed in the following table:

Table 10.6 Feature Control Registers.

Name of register
Write to
register

Action

Feature control 0 X01 reset all Bulk and Interrupt endpoints IN and OUT
Feature control 1 X01 reset all Bulk endpoints IN and OUT
Feature control 2 X01 reset all Bulk endpoints OUT
Feature control 3 X01 reset all Bulk endpoints IN

Feature control 4 X01 reset all Interrupt endpoints IN and OUT

Feature control 5 X01 reset all Interrupt endpoints OUT
Feature control 6 X01 reset all Interrupt endpoints IN
Feature control 7 X01 reset all Bulk and Interrupt endpoints OUT
Feature control 8 X01 reset all Bulk and Interrupt endpoints IN
Feature control 0 X02 set all toggle bits of Bulk and Interrupt endpoints IN and OUT to ‘0’
Feature control 1 X02 set all toggle bits of Bulk and Interrupt endpoints IN and OUT to ‘1’

Feature control 2 X02 set all toggle bits of Bulk and Interrupt endpoints IN to ‘0’

Feature control 3 X02 set all toggle bits of Bulk and Interrupt endpoints IN to ‘1’
Feature control 4 X02 set all toggle bits of Bulk and Interrupt endpoints OUT to ‘0’
Feature control 5 X02 set all toggle bits of Bulk and Interrupt endpoints OUT to ‘1’
Feature control 6 X02 set all toggle bits of Bulk endpoints IN and OUT to ‘0’
Feature control 7 X02 set all toggle bits of Bulk endpoints IN and OUT to ‘1’
Feature control 8 X02 set all toggle bits of Interrupt endpoints IN and OUT to ‘0’
Feature control 9 X02 set all toggle bits of Interrupt endpoints IN and OUT to ‘1’

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 60

The addresses of these registers are as follows:

Table 0.7 Control features registers

address Name Description Dir

20h Feature control 0 Resets all Bulk and Interrupt IN and OUT
endpoints

W

21h Feature control 1
Resets all Bulk IN and OUT endpoints and or
set all Bulk and Interrupt endpoints IN and
OUT

W

22h Feature control 2
Resets all Bulk OUT and or clear all Bulk and
Interrupt endpoints IN

W

23h Feature control 3
Resets all Bulk IN and or set all Bulk and
Interrupt endpoints IN

W

24h Feature control 4
Resets all Interrupt endpoints IN and OUT and
or clear all Bulk and Interrupt endpoints OUT

W

25h Feature control 5
Resets all Interrupt endpoints OUT and or set
all Bulk and Interrupt endpoints OUT

W

26h Feature control 6 Resets all Interrupt endpoints IN and or clear
all Bulk endpoints IN and OUT

W

27h Feature control 7
Resets all Bulk and Interrupt endpoints OUT
and or set all Bulk endpoints IN and OUT

W

28h Feature control 8
Resets all Bulk and Interrupt endpoints IN and
or clear all Interrupt endpoints IN and OUT

W

29h Feature control 9 Sets all Interrupt endpoints IN and OUT W

 Isochronous IN endpoints

The ALUSB 2.0 core supports up to 4 Isochronous IN endpoints that can operate in Full Speed mode as
well as in High speed mode. Each Isochronous In endpoint is independent on other endpoints.
Isochronous endpoints are referenced from 12 to 15.

The interface for all IN isochronous endpoints consists of the following ports:

 DataInIso (63 downto 0),

 BusyIso(3 downto 0),

 TxValidIso(3 downto 0),

 TxValidHIso (3 downto 0),

 FTgg(3 downto 0).

Each Isocronous In endpoint uses these ports to communicate with an external device. Figure 11.1
shows ports that are interface of Isochronous IN endpoints.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 61

Figure 0.1 Isochronous In interface

Single endpoint utilizes:

 16 bits of DataInIso,

 1 bit of BusyIso,

 1 bit of TxValidIso,

 1 bit of TxValidHIso,

 1 bit of FTgg.

The table 11.1 shows how these signals are assigned to individual endpoints.

Table 0.1 Signal assignment to individual Isochronous IN endpoints

Endpoint
number

DataInIso BusyIso TxValidIso TxValidHIso FTgg

12 (15 :0) 0 0 0 0

13 (31 :16) 1 1 1 1

14 (47 :32) 2 2 2 2

15 (63 :48) 3 3 3 3

It means that endpoint 12 IN utilizes:

 DataInIso(15 downto 0),

 Busy(0),

 TxValidIso(0),

 TxValidHIso(0)

 FTgg(0).

Endpoint 13 IN utilizes:

 DataInIso(31 downto 15),

 BusyIso(1),

 TxValidIso(1),

 TxValidHIso(1),

 FTgg(1) etc.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 62

To use given isochronous IN endpoint, the corresponding bit in VALID_in_H register (45h) must be set to
one.

Isochronous IN endpoints assure data flow from any device to USB Host in constant rate. A device writes
data to FIFO organized as double, independent buffers located inside each Isochronous IN endpoint. The
FIFO buffers are switched when first Token IN, addressed to specified endpoint, comes from the USB
Host after SOF token occurrence. Thus, at a given moment a device has access to only one FIFO buffer,
the second FIFO buffer can then be read by USB Host. FIFO buffers switch is indicated by generating
impulse on the corresponding bit in the FTgg port. The pulse lasts one CLK cycle.

Figure 11.2 shows how FIFO buffers are accessed and switched.

Figure 0.2 FIFO switch in Isochronous In Endpoint

Figure 11.2b shows how FIFO buffers are connected before the switch. The FIFO1 buffer is on the
Endpoint Controller side and FIFO2 buffer is written by device.

Figure 11.2a shows moment when FIFO buffers are switched. The USB Host sends SOF token and
subsequently issues Token IN to Isochronous IN Endpoint. In response to this token, FIFO buffers are
switched and impulse on FTgg(0) is generated. The ALUSB core sends the data from FIFO2 buffer to the
USB Host. After that, next IN Token is issued to this endpoint. This token does not cause the FIFO switch.

Note:

Only first Token In to specified endpoint in (micro)frame causes FIFO buffers switch in
specified endpoint.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 63

After the switch (figure 11.2 c), FIFO2 buffer is read by Endpoint Controller and FIFO1 buffer can be
written by a device. This way, the Endpoint Controller can read data and send it to USB Host. The
external device can write data to its FIFO buffer at the same time.

A device must fill its FIFO buffer between two rising edges on corresponding bit in the FTgg port. If there
is no data to send in FIFO, empty packet is sent to the USB Host. If Token IN is issued to not
implemented endpoint or endpoint’s Valid bit is not set, then no response is set to the USB Host.

In order to write data to the FIFO a device must set valid data on DataInIso port and set TxValidIso
signal. When the TxValidHIso is also set to one it indicates that all 16 bits of DataInIso bus are valid. If
TxValidHIso is not set it means that only the lowest 8 bits of DataInIso bus are valid. The data are written
to FIFO on rising edge of CLK when TxValidIso is asserted.

The Busy output port indicates that corresponding endpoint performs internal operation, and it is not
able to read any data from a device. If a device sees BusyIso set to one, and rising edge on CLK occurs it
must not activate TxValidIso signal. A device can write data when Busy is cleared and rising edge of CLK
occurs. Figure 11.3 shows waveforms where seven bytes are written to ISO IN 12 endpoint buffer.

The Data0, Data2, Data4, Data6 bytes appear on the DataInIso(7 :0) bus. The Data1, Data3, Data6 bytes
appear on DataInIso(15 :8) bus. The vertical, dashed lines indicate moments, when the data are written
to FIFO.

Figure 0.3 Writing data to Isochronous In endpoint

The FTgg(0) port is set to one indicating that FIFO buffers are switched. Next, device sets valid Data 0
and Data1 bytes on DataInIso bus. Data1 byte is written to FIFO because TxValidHIso is set to one.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 64

Subsequently, Data2 and Data3 bytes are valid on the bus and the BusyIso output it asserted.
Responding to that, device must suspend write operation until BusyIso goes low.

The Data4 and Data5 bytes are written to FIFO on the first rising clock edge when TxValid signals are
assreted and BusyIso(0) is cleared.

From the USB Host point of view, isochronous IN endpoint is seen as single FIFO. If the USB Host
requires data from FIFO, it send IN tokens to specified endpoint. Responding to these tokens, the ALUSB
2.0 core sends data residing in FIFO buffer located on the Endpoint Controller side. Data are sent in
compliance with MAX_PACKET_SIZE descriptor (see chapter 5.9 in Universal Serial Bus Specification
Revision 2.0) in the same order as they were writen to FIFO by a device. Based on figure 11.3, after
sending IN token to endpoint 12, the USB Host receives data in folowing order: Data0, Data1, Data2,
Data3, Data4, Data5, Data6.

A device must assure that data count written to FIFO does not exceed data count specified by
MAX_PACKET SIZE descriptor. Moreover, a device must assure that all necessary data are written to
FIFO between two impulses on FTgg port.

The empty packet is sent to the USB Host in response to Token IN if FIFO buffer is empty.

If Token IN is issued to not implemented endpoint or Valid bit of the endpoint is not set, then no
response is sent to the HOST. If the Host retrieves bad data there is no possibility to re-send them to the
Host.

In Full Speed mode Host issues only one Token IN to specified Isochronous In edpoint per frame.

In High Speed mode Host can issue up to three Tokens IN to specified Isochronous In edpoint per
microframe. But only first token in microframe causes FIFO switch.

 Isochronous OUT endpoints

Isochronous OUT endpoints interface.
The ALUSB 2.0 core supports up to 4 Isochronous OUT endpoints that can operate in High Speed mode
as well as in Full speed mode. Each Isochronous Out endpoint is independent on other endpoints.
Isochronous endpoints are references from 12 to 15.

Interface for all isochronous OUT endpoints consists of the following ports:

 DataOutIso(63 downto 0),

 Ce_uP(3 downto 0),

 RxValidIso(3 downto 0),

 RxValildHIso(3 downto 0),

 FTgg(7 downto 4)

 CRCErr(3 downto 0).

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 65

Each Isochronous OUT endpoint uses these ports to communicate with an external device. Figure 12.1
shows ports of the ALUSB 2.0 core that are interface of the Isochronous OUT endpoints.

Figure 0.1 Isochronous Out interface

Single endpoint utilizes:

 16 bits of DataOutIso,

 1 bit of Ce_uP,

 1 bit of RxValidIso,

 1 bit of RxValidHIso,

 1 bit of FTgg,

 1 bit CRCErr.

The table 12.1 shows how these signals are assigned to individual endpoints.

Table 0.1 Signal assignment to individual Isochronous OUT endpoints

Endpoint
number

DataOutIso Ce_uP RxValidIso RxValidHIso FTgg CRCErr

12 (15 :0) 0 0 0 4 0

13 (31 :16) 1 1 1 5 1

14 (47 :32) 2 2 2 6 2

15 (63 :48) 3 3 3 7 3

It means that endpoint 12 OUT utilizes:

 DataOutIso (15 downto 0),

 CE_uP(0),

 RxValidIso (0),

 RxValidHIso (0),

 FTgg(4),

 CRCErr(0).

Endpoint 13 OUT utilizes :

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 66

 DataOutIso (31 downto 15),

 Ce_uP(1),

 RxValidIso (1),

 RxValidHIso (1),

 FTgg(1),

 CRCErr (1) etc.

To use given isochronous OUT endpoint, the corresponding bit in VALID_out_H register (47h) must be
set to one.

Isochronous OUT endpoints assure data flow from USB Host to any device at constant rate. A device
reads the data from FIFO organized as double, independent FIFO buffers located inside each
Isochronous OUT endpoint.

The FIFO buffers are switched when the USB core receives Token OUT addressed to specified endpoint
followed by SOF token.

If SOF token occurs but in the current (micro)frame the USB Host has not issued Token OUT to this
endpoint then FIFO buffers are not switched.

At a given moment a device has access to only one FIFO buffer. The Endpoint Manager can write data to
the second FIFO buffer at the same time. The FIFO buffers switch is indicated by pulse generation on the
corresponding bit on the FTgg port. The pulse lasts one CLK cycle.

Figure 12.2 shows how FIFOS are accessed and switched.

Figure 0.2 Fifo toggle in Isochronous OUT

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 67

Figure 12.2b shows how FIFOS are connected before the switch. The FIFO1 buffer is on the Endpoint
Controller side and the FIFO2 buffer is being read by a device.

Figure 12.2a shows moment when FIFOS are switched. The Host sends Token OUT to Isochronous
Endpoint OUT 12, and subsequently, it issues SOF packet. In response to this packet, FIFOS are switched
and an impulse on FTgg(0) is generated. After falling edge on FTgg(0) the device can read data from
FIFO.

Note:
Isochronous OUT Endpoints FIFOS are switched when SOF occurs after Host sent
Token OUT to specified endpoint in previous frame. This mechanism is different from
FIFO toggle applied to Isochronous IN Endpoints.

After the FIFO buffer switch (figure 12.2 c), the FIFO 2 buffer can be written by the endpoint controller
and FIFO 1 buffer can be read by a device. This way, a device can read data that the Endpoint controller
wrote to FIFO 2 before FIFO switch.

The device must manage to read its FIFO buffer between two rising edges on the corresponding bit in
the FTgg port, otherwise, unread data will be lost.

In order to read the data from FIFO, the device must set CE_uP to one. After two cycles of CLK, valid
data occurs on DataOutIso bus. RxValidIso and RxValidHIso signals indicate validity of the read data.

If the device has set CE_uP to one and after two cycles of CLK RxValidIso is not set, it means there is no
data in the FIFO buffer.

If the device has set CE_uP to one and after two cycles of CLK RxValidIso is set, but RxValidHIso is not
set, it means that only one byte is available in the FIFO buffer.

If a device has set CE_uP to one and after two cycles of CLK RxValidIso is set, and RxValidHIso is set to
one as well, it means that two bytes on the bus are valid, and it is necessary to perform another read
operation to check if there are any data in the FIFO.

Read operation can be performed as burst and as single read.

In burst, CE_uP is set to one and held in high state for more than one CLK cycle. Figure 12.3 shows
reading from FIFO in burst mode. Vertical, dashed lines indicate moments when ALUB 2.0 issues valid
data on DataOutIso bus.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 68

Figure 0.3 Reading data from Fifo using burst method

The USB Host sent 9 bytes to Isochronous OUT endpoint 12. After the FIFO switch the device wants to
read these data. It sets Ce_uP(0) for 3 CLK cycles. Data0 and Data1 appears on DataOutIso(15:0) two CLK
cycle after Ce_uP(0) was set to one. Data2 and Data3 appear during next cycle because Ce_uP(0) was
still assereted. Since Ce_uP(0) lasts three CLK cycles, Data4 and Data5 are the last ones in this data blok.

In next burst Ce_uP(0) is asserted for 3 CLK cycles again. In respose to this assertion Data6 and Data7
appear. In next CLK cycle only Data8 occurs, and RxValidHIso(0) goes low. Data8 is the last byte in FIFO.

Note:
The case where RxValidHIso(0) and RxValidIso(1) occures only if a device is reading the last
byte from FIFO and there was odd byte count in FIFO buffer.

In single mode, a device sets Ce_uP for one CLK cycle. Figure 12.4 shows the case when both modes are
used by a device.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 69

Figure 0.4 Reading data from Fifo using single and burst methods

If the CRC error occures during transmission from the USB Host to ALUSB 2.0 core, then after fifo switch,
the coresponding bit of CRCErr is set to one. This way the device knows that all data residing in FIFO are
corrupted. Correct data may be accesed after next fifo switch.

In Isochronous transfers the device has no possibility to inform the The USB Host about error occurance
because Isochronous transmission supports neither handshakes nor re-transmission.

Debugging signals for ISO Out endpoints.

The isochronous transmission does not support handshakes and retransmission. The USB 2.0 core
cannot notify the USB Host if the received packet is corrupted. The isochronous transmission is designed
for real-time applications where correctness of the data is not so important as delivery on time.

The USB 2.0 core may not be able to detect the data phase of ISO transmission when PID of the
received data packet is corrupted. In such case the received packet is ignored. It causes losing the entire
data packet. The USB 2.0 core is able to detect such situation. Typically, data is transmitted to ISO
endpoints every USB frame or microframe. The USB 2.0 core checks at the beginning of each
frame/microframe if the ISO Out endpoints received data in the previous frame. The REPEATNEEDED
flag is set when new frame starts and ISO Out endpoint has not received data during the previous frame.
This signal informs that the packet might be lost. Each ISO OUT endpoint has individual REPEATNEEDED
flag.

 REPEATNEEDED(0) – Endpoint ISO OUT 12.

 REPEATNEEDED(1) – Endpoint ISO OUT 13.

 REPEATNEEDED(2) – Endpoint ISO OUT 14.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 70

 REPEATNEEDED(3) – Endpoint ISO OUT 15.
This signal can be used for detecting ignored packets. It should not be used during normal core
operation.

 The lost packet can be replaced with the previous one. If the entire packet was ignored it means
that the previous packet still remains in the endpoint buffer. Activating the REPEAT signal forces the ISO
OUT endpoint to treat the previous packet as the new one. The previous packet can be read by external
device to fill the gap caused by ignored packet. Each ISO Out endpoint has individual REPEAT flag.

 REPEAT(0) – Endpoint ISO OUT 12.

 REPEAT(1) – Endpoint ISO OUT 13.

 REPEAT(2) – Endpoint ISO OUT 14.

 REPEAT(3) – Endpoint ISO OUT 15.
These signals are for debugging purposes only and should not be used during normal core operation.
The REPEAT signal should be connected to ground and the REPEATNEEDED should be left unconnected.

 Interrupts
The ALUSB 2.0 core has one INT output that is used to request interrupt to the processor.

This output is associated with Status register (40h) and Int_Enable register (4Ch).

Table 0.1 Status Register

Status_USB Status Register x40

b7 b6 b5 b4 b3 b2 b1 b0

EnumEnabl HsFs Resume SetDataIntr SOF TkSetup SuspDetect UsbReset

W R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Table 0.2 Interrupt Enable register

Status_USB Interrupt Enable x4C

b7 b6 b5 b4 b3 b2 b1 b0

- Disab Res_En SDI_En SOF_En TkS_En SDet_En UsbRe_En

R R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Status register contains flags that are updated when any of the six interrupt sources occur and
Int_Enable register contains enable bits associate with flags. The Figure 13.1 shows Interrupt system in
ALUSB 2.0 core.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 71

Figure 0.1 Interrupt system in the ALUSB 2.0 core

When Disab is set to one, then INT output is reset to zero even if some flags and their enable bits are
set.

When Disab is reset to zero then interrupt system is enabled. If particular flags are set by the ALUSB 2.0
core and their enable bits are set to one, then INT is being set to one.

The ALUSB 2.0 core cannot clear flags associated with interrupt system.

During interrupt service, processor can clear them by writing one to particular flags (see section 14.1).

Registers

OUT0CRTL register
OUT0CRTL Set toggle and reset Bulk0 OUT endpoint X00

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

When set to one then OUT Bulk 0 endpoint is reset.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 72

SET_ENDP – sets Toggle bit in Bulk 0 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT1CRTL register
OUT0CRTL Set toggle and reset Bulk1 OUT endpoint X01

b7 b6 b5 B4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 1 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 1 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT2CRTL register
OUT2CRTL Set toggle and reset Bulk2 OUT endpoint X02

B7 b6 b5 B4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then endpoint Bulk 2 OUT is reset.

SET_ENDP – sets Toggle bit in Bulk 2 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero. If SET_ENDP is
reset to zero then toggle bit is not updated.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 73

OUT3CRTL register
OUT3CRTL Set toggle and reset Bulk3 OUT endpoint X03

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 3 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 3 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT4CRTL register
OUT4CRTL Set toggle and reset Bulk4 OUT endpoint X04

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 4 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 4 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT5CRTL register
OUT5CRTL Set toggle and reset Bulk5 OUT endpoint X05

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.When set to one then Bulk 5 OUT endpoint is reset.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 74

SET_ENDP – sets Toggle bit in Bulk 5 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero. If SET_ENDP is
reset to zero then toggle bit is not updated.

OUT6CRTL register
OUT6CRTL Set toggle and reset Bulk6 OUT endpoint X06

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 6 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 6 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero .

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT7CRTL register
OUT7CRTL Set toggle and reset Bulk7 OUT endpoint X07

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 7 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 7 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 75

OUT8CRTL register
OUT8CRTL Set toggle and reset Interrupt0 OUT endpoint X08

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Interrupt 8 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Interrupt 8 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT9CRTL register
OUT9CRTL Set toggle and reset Interrupt9 OUT endpoint X09

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Interrupt 9 OUT endpoint is reset.

SET_ENDP – sets Toggle bit in Interrupt 9 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT10CRTL register
OUT10CRTL Set toggle and reset Interrupt10 OUT endpoint X0A

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Interrupt 10 OUT endpoint is RESET.

SET_ENDP – sets Toggle bit in Interrupt 10 OUT endpoint to value depending on VAL_SET.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 76

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

OUT11CRTL register
OUT11CRTL Set toggle and reset Interrupt11 OUT endpoint X0B

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Interrupt 11 OUT endpoint is RESET.

SET_ENDP – sets Toggle bit in Interrupt 11 OUT endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN0CRTL register
IN0CRTL Set toggle and reset Bulk0 IN endpoint X10

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

When set to one then endpoint Bulk 0 IN is RESET.

SET_ENDP – sets Toggle bit in Bulk 0 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 77

IN1CRTL register

IN0CRTL Set toggle and reset Bulk1 IN endpoint X11

b7 b6 b5 B4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 1 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 1 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN2CRTL register
IN2CRTL Set toggle and reset Bulk2 IN endpoint X12

B7 b6 b5 B4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 2 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 2 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN3CRTL register
IN3CRTL Set toggle and reset Bulk3 IN endpoint X13

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 78

When set to one then endpoint Bulk 3 IN is RESET.

SET_ENDP – sets Toggle bit in Bulk 3 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN4CRTL register
IN4CRTL Set toggle and reset Bulk4 IN endpoint X14

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then endpoint Bulk 4 IN is reset.

SET_ENDP – sets Toggle bit in Bulk 4 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero. If SET_ENDP is
reset to zero then toggle bit is not updated.

IN5CRTL register
IN5CRTL Set toggle and reset Bulk5 IN endpoint X15

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 5 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 5 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero .

If SET_ENDP is reset to zero then toggle bit is not updated.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 79

IN6CRTL register
IN6CRTL Set toggle and reset Bulk6 IN endpoint X16

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 6 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 6 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN7CRTL register
IN7CRTL Set toggle and reset Bulk7 IN endpoint X17

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint. When set to one then Bulk 7 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Bulk 7 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN8CRTL register
IN8CRTL Set toggle and reset Interrupt0 IN endpoint X18

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 80

When set to one then endpoint Interrupt 8 IN is RESET.

SET_ENDP – sets Toggle bit in Interrupt 8 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN9CRTL register
IN9CRTL Set toggle and reset Interrupt9 IN endpoint X19

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

When set to one then endpoint Interrupt 9 IN is RESET.

SET_ENDP – sets Toggle bit in Interrupt 9 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

IN10CRTL register
IN10CRTL Set toggle and reset Interrupt10 IN endpoint X1A

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

When set to one then Interrupt 10 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Interrupt 10 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 81

IN11CRTL register
IN11CRTL Set toggle and reset Interrupt11 IN endpoint X1B

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - VAL_SET SET_ENDP RES_ENDP

- - - - - W W W

0 0 0 0 0 0 0 0

RES_ENDP- Reset Endpoint.

When set to one then Interrupt 11 IN endpoint is reset.

SET_ENDP – sets Toggle bit in Interrupt 11 IN endpoint to value depending on VAL_SET.

If VAL_SET is set to one and SET_ENDP is set to one then toggle bit is set to one.

If VAL_SET is reset to zero and SET_ENDP is set to one then toggle bit is reset to zero.

If SET_ENDP is reset to zero then toggle bit is not updated.

 Status Register
Status_USB Status Register x40

B7 b6 b5 b4 b3 b2 b1 b0

EnumEna HsFs Resume SetDataIntr SOF TkSetup SuspDetect UsbReset

W R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

The Status_USB register contains current status of the USB device. The Status_USB register is
associated with six interrupt sources generated by USB. These sources are:

 USB Bus Reset,

 USB Bus Suspend,

 Token Setup Recived,

 Token SOF (Start Of Frame),

 Setup Data Recived,

 USB Bus Resume.

Occurance any of these five interrupt sources sets the corresponding flag in the Status_USB register. If
the corresponding bit in the INT_Enable register is set to one and interrupt system is enabled, then
interrupt output INT is set to one.

When a device detects active INT, it can read the Status_USB register to find out which source(s) caused
the interrupt request.

In order to clear the flag the device must write one to it.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 82

For example, if the Status_USB register has value 03h, and the device wants to clear only flag
Susp_Detect, then the device must write 02h to the Status_USB register. After writing, the Status_USB
register has value 01h.

Bit HsFs contains information about current speed mode.

HsFs = 0 – ALUSB works in full speed mode.

HsFs = 1 – ALUSB works in high speed mode.

Bit HsFs is not associated with interrupt system and it is read-only.

EnumEna – Enumeration Enable.

If EnumEna set to one then hardware enumerator is enabled,

If EnumEna reset to zero then hardware enumerator is disabled.

DEVICE_addr register
DEVICE_addr Device address x41

b7 b6 b5 b4 b3 b2 b1 b0

DEVA7 DEVA6 DEVA5 DEVA4 DEVA3 DEVA2 DEVA1 DEVA0

W R R R/W W W W /W

0 0 0 0 0 0 0 0

The Device Address Register contains USB device address. It is write only.

This register can be changed in response to Set Address request.

Test register
Test Mode register consists of the test number bits and the test enable flag. The microcontroller sets the
appropriate test mode on the four last significant bits of the registers. If the test number was set
properly, the microcontroller enables the test by setting the TestEN flag. The protocol management
block performs all operation required by selected test. The test can be disabled by resetting the USB
device only.

Table 0.1 Test Mode register

TestMode Test Mode X42

B7 b6 b5 b4 B3 b2 b1 B0

D7 D6 D5 TestEN TestNR3 TestNr2 TestNr1 TestNr0

R R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 83

The Enumeration Manager may also select and run these tests if it was enabled to handle the
enumeration process. The microcontroller does not have access to the register if the enumeration
manager is enabled i.e. if EnumEna in the status register is set to one.

Suspend register
Suspend Suspend Register x43

B7 b6 B5 b4 B3 b2 b1 B0

D7 D6 D5 D4 D3 EnterSusp ResumeEn DriveRes

R R R R R R/W R/W R/W

0 0 0 0 0 0 0 0

When microprocessor sets the EnterSusp flag in the Suspend register the USB Core drives the Suspend
pin to one. The high state on the Suspend pin should turn off the external clock oscillator. These actions
put the USB core into low power mode, as required by the USB specification.

The ResumeEn bit in the Suspend register should be set to one if the remote wakeup is enabled. The
microcontroller or the Enumeration Manager can set this bit in response to the Set Feature/Device
request.

The microcontroller can set DriveRes bit in the Suspend register to drive remote wakeup if ResumeEn bit
is set to one.

Interrupt Enable Register.
The Interrupt Enable register contains enable bits associated with interrupt flags from the Status
Register. The USB 2.0 interrupts are fully described in chapter 13. Please, refer to this chapter for more
detailed description.

Status_USB Interrupt Enable x4C

b7 b6 b5 b4 b3 b2 b1 b0

- Disab Res_En SDI_En SOF_En TkS_En SDet_En UsbRe_En

R R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

New_Frm_L and New_Frm_L registers.
When the USB Host sends SOF token with 11-bit frame number and 3 bit microframe number, the
ALUSB 2.0 core updates two registers: New_Frm_L and New_Frm_L with this 14-bit frame number.

Mfr2, Mfr1, Mfr0 – are located in New_Frm_L register and stand for current micro frame number.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 84

Frm 0 to Frm 10 – are located in New_Frm_L and New_Frm_H registers and stand for current frame
number.

 Thereby, New_Frm_L and New_Frm_L keep current frame and micro frame number.

New_Frm_L New Frame Low Byte X58

b7 b6 b5 b4 b3 b2 b1 b0

Frm4 Frm3 Frm2 Frm1 Frm0 Mfr 2 Mfr 1 Mfr0

R R R R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

New_Frm_H New Frame High Byte X59

b7 b6 b5 b4 b3 b2 b1 b0

- - Frm10 Frm9 Frm8 Frm7 Frm6 Frm5

R R R R R R R R

0 0 0 0 0 0 0 0

New_Frm_L and New_Frm_L registers are read-only.

 Max Packet Size registers.
Each Isochronous Endpoint IN is associated with two registers where the lowest 13 bits of MAX PACKET
SIZE are stored.

Tables below show MAX Packet Size of ISO 12 IN endpoint stored in two registers.

Register Max_Pack_size_L_n contains lowest 8 bits of MAX PACKET SIZE descriptor. N stands for
endpoint number. For Isochronous endpoints n = 12 ..15.

Max_Pack_size_L_C MAX Packet Size of endpoint ISO IN low byte X50

b7 b6 b5 b4 b3 b2 b1 b0

MPS7 MPS6 MPS5 MPS4 MPS3 MPS2 MPS1 MPS0

W W W W W W W W

0 0 0 0 0 0 0 0

Register Max_Pack_size_H_n contains 5 bits of MAX PACKET SIZE descriptor.

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 85

Max_Pack_size_H_C MAX Packet Size of endpoint ISO IN High byte X51

b7 b6 b5 b4 B3 b2 b1 b0

- - - MPS12 MPS11 MPS10 MPS9 MPS8

W W W W W W W W

0 0 0 0 0 0 0 0

Bits 15, 14 and 13 of MAX PACKET SIZE descriptor are not stored in described registers.

Setup registers.
Endpoint zero accepts a special setup packet, which contains an eight-byte data structure that provides
host information about the control transaction. The USB core transfers the eight setup bytes into eight
bytes of RAM starting from 60H address. The microcontroller can inspect the data and run processing of
the request. Two interrupts are associated with control transfer. They allow easy and fast access to the
eight request bytes. Please see chapter 5.1 for more details.

Counter_WR and Counter_RD registers.
The USB 2.0 core allows connecting external ROM memory with USB descriptors. The endpoint zero can
read the descriptors directly from that memory. The data does not have to be copied into the endpoint
0 FIFO buffer. The external ROM memory should be connected to the following ports:

 DataExt(15:0) – input data bus. It should be connected with data output of the external
memory.

 AddExt(4:0) – address output. It should be connected with address input of the external
memory.

The endpoint zero packet size cannot be larger than 64 bytes. If a descriptor is larger, it must be divided
into 64 bytes packets. The endpoint zero controller addresses the 64 bytes using AddExt(4:0) address
port. The higher addresses of the external memory must be set correctly depending, which packet and
descriptor is currently sent. The Counter_wr register defines number of bytes to send.

Counter_wr_low Endpoint 0 send counter – low byte X5A

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

W W W W W W W W

0 0 0 0 0 0 0 0

User Guide: USB 2.0 Core

Rev. [6/2012]
www.aldec.com Page 86

Counter_wr_high Endpoint 0 send counter – high byte X5B

b7 b6 b5 b4 B3 b2 b1 b0

- - - - - - - b8

W W W W W W W W

0 0 0 0 0 0 0 0

This register must be set correctly before sending a packet from the external ROM memory. Writing a
value to the register arms automatically the endpoint 0. The data are sent after receiving valid token
addressed to the endpoint zero. The EMPTY flag of the endpoint zero can be checked to verify if sending
the data is finished.

Counter_rd_low Endpoint 0 receive counter – low byte X5C

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

R R R R R R R R

0 0 0 0 0 0 0 0

Counter_rd_high Endpoint 0 receive counter – high byte X5D

b7 b6 b5 b4 B3 b2 b1 b0

- - - - - - - b8

R R R R R R R R

0 0 0 0 0 0 0 0

The USB 2.0 core allows also reading Counter_rd register. It contains number of received bytes by
endpoint zero from USB Host. This register can be used to verify how many bytes ware received during
the last transfer.

